Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spaces for which all compact metric spaces are remainders


Authors: James Hatzenbuhler and Don A. Mattson
Journal: Proc. Amer. Math. Soc. 82 (1981), 478-480
MSC: Primary 54D35; Secondary 54D40
DOI: https://doi.org/10.1090/S0002-9939-1981-0612744-5
MathSciNet review: 612744
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a locally compact, completely regular, Hausdorff space, and let $ K(X)$ be the lattice of compactifications of $ X$. Conditions on $ K(X)$ and an internal condition are obtained which characterize when $ X$ has all compact metric spaces as remainders.


References [Enhancements On Off] (What's this?)

  • [1] R. E. Chandler, Continua as remainders, revisited, General Topology Appl. 8 (1978), 63-66. MR 0464165 (57:4100)
  • [2] -, Hausdorff compactifications, Dekker, New York, 1978.
  • [3] R. E. Chandler and Fu-Chien Tzung, Remainders in Hausdorff compactifications, Proc. Amer. Math. Soc. 70 (1978), 196-202. MR 0487981 (58:7560)
  • [4] L. Gillman and M. Jerison, Rings of continuous functions, reprint of 1960 ed., Springer-Verlag, Berlin, 1976. MR 0407579 (53:11352)
  • [5] J. Hatzenbuhler and D. A. Mattson, A note on $ c$-point compactifications of locally compact spaces (submitted).
  • [6] R. G. Lubben, Concerning the decomposition and amalgamation of points, upper semi-continuous collections, and topological extensions, Trans. Amer. Math. Soc. 49 (1941), 410-466. MR 0005317 (3:136a)
  • [7] K. D. Magill, Jr., $ N$-point compactifications. Amer. Math. Monthly 72 (1965), 1075-1081. MR 0185572 (32:3036)
  • [8] -, Countable compactifications, Canad. J. Math. 18 (1966), 616-620. MR 0198420 (33:6578)
  • [9] -, A note on compactifications, Math. Z. 94 (1966), 322-325. MR 0203681 (34:3530)
  • [10] -, More on remainders of spaces in compactifications, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970), 449-451. MR 0268854 (42:3751)
  • [11] A. Okuyama, A characterization of a space with countable infinity, Proc. Amer. Math. Soc. 28 (1971), 595-597. MR 0276929 (43:2669)
  • [12] J. W. Rogers, Jr., On compactifications with continua as remainders, Fund. Math. 70 (1971), 7-11. MR 0283763 (44:993)
  • [13] A. K. Steiner and E. F. Steiner, Compactifications as closures of graphs, Fund. Math. 63 (1968), 221-223. MR 0238270 (38:6546)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D35, 54D40

Retrieve articles in all journals with MSC: 54D35, 54D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0612744-5
Keywords: Compactification, remainders, lattice of compactifications, all compact metric spaces as remainders
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society