Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Stokes' theorem for noncompact manifolds


Author: Leon Karp
Journal: Proc. Amer. Math. Soc. 82 (1981), 487-490
MSC: Primary 58A10; Secondary 58G99
DOI: https://doi.org/10.1090/S0002-9939-1981-0612746-9
MathSciNet review: 612746
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Stokes' theorem was first extended to noncompact manifolds by Gaffney. This paper presents a version of this theorem that includes Gaffney's result (and neither covers nor is covered by Yau's extension of Gaffney's theorem). Some applications of the main result to the study of subharmonic functions on noncompact manifolds are also given.


References [Enhancements On Off] (What's this?)

  • [1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 5 (1965), 313-362. MR 0175148 (30:5333)
  • [2] R. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, New York, 1964. MR 0169148 (29:6401)
  • [3] S. Bochner, Curvature and Betti numbers, Ann. of Math. 49 (1948), 379-390. MR 0025238 (9:618d)
  • [4] M. Gaffney, A special Stokes' Theorem for complete Riemannian manifolds, Ann. of Math. 60 (1954), 140-145. MR 0062490 (15:986d)
  • [5] R. Greene and H. Wu, Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent. Math. 27 (1974), 265-298. MR 0382723 (52:3605)
  • [6] A Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72. MR 0094452 (20:970)
  • [7] L. Karp, Subharmonic functions on real complex manifolds, Math. Z. (to appear). MR 652859 (84d:53042)
  • [8] S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, Interscience, New York, 1961.
  • [9] G. de Rham, Variétés différentiables, Hermann, Paris, 1955.
  • [10] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 0193578 (33:1797)
  • [11] K. I. Virtanen, Über die Existenz von becshränkten harmonischen Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. A I Math.-Phys., no. 75, (1950), 8pp. MR 0038443 (12:403b)
  • [12] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. MR 0431040 (55:4042)
  • [13] -, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670. MR 0417452 (54:5502)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58A10, 58G99

Retrieve articles in all journals with MSC: 58A10, 58G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0612746-9
Keywords: Stokes' theorem, divergence theorem, subharmonic function, harmonic function, Gaussian curvature, sectional curvature
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society