Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Boolean powers of groups


Author: John Lawrence
Journal: Proc. Amer. Math. Soc. 82 (1981), 512-516
MSC: Primary 06E99; Secondary 08A99, 20E15
DOI: https://doi.org/10.1090/S0002-9939-1981-0614869-7
MathSciNet review: 614869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A group is $ B$-separating if a Boolean power of the group has a unique Boolean algebra. It is proved that a finite subdirectly irreducible group is $ B$-separating if and only if it is non-Abelian.


References [Enhancements On Off] (What's this?)

  • [1] S. Burris, Boolean powers, Algebra Universalis 5 (1975), 341-360. MR 0447078 (56:5393)
  • [2] W. Hanf, On some fundamental problems concerning isomorphism of Boolean algebras, Math. Scand. 5 (1957), 205-217. MR 0108451 (21:7167)
  • [3] B. Jonsson, On isomorphic types of groups and other algebraic systems, Math. Scand. 5 (1957), 224-229. MR 0108453 (21:7169)
  • [4] R. McKenzie, Para primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties, Algebra Universalis 8 (1978), 336-348. MR 0469853 (57:9634)
  • [5] A. Mostrowski and A. Tarski, Boolesche Ringe mit geordneter Basis, Fund. Math. 32 (1939), 69-86.
  • [6] B. H. Neumann and S. Yamamuro, Boolean powers of simple groups, J. Austral. Math. Soc. 5 (1965), 315-324. MR 0197555 (33:5720)
  • [7] G. Bergman, Boolean rings of projection maps, J. London Math. Soc. (2) 4 (1972), 593-598. MR 0311531 (47:93)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06E99, 08A99, 20E15

Retrieve articles in all journals with MSC: 06E99, 08A99, 20E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0614869-7
Keywords: Boolean power, Boolean ring, group
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society