Density relative to a torsion theory
Authors:
Paul Bland and Stephen Riley
Journal:
Proc. Amer. Math. Soc. 82 (1981), 527-532
MSC:
Primary 16A64; Secondary 16A80
DOI:
https://doi.org/10.1090/S0002-9939-1981-0614872-7
MathSciNet review:
614872
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: If is a torsion theory on Mod
, then a ring
of biendomorphisms of a
-cocritical module is topologized. Moreover, if a certain factor module of
is quasi-projective, a ring monomorphism
is found such that
is topologically dense in
. This is done in such a way that when
is the torsion theory in which every module is torsion free, the Jacobson density theorem is recovered.
- [1] S. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235. MR 0191935 (33:162)
- [2] J. Golan, Localization of noncommutative rings, Marcel Dekker, New York, 1975. MR 0366961 (51:3207)
- [3] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., rev. ed., 1964. MR 0222106 (36:5158)
- [4] R. Johnson and E. Wong, Quasi-infective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268. MR 0131445 (24:A1295)
- [5] J. Lambek, Torsion theories, additive semantics, and rings of quotients, Lecture Notes in Math., vol. 177, Springer-Verlag, Berlin, Heidelberg and New York, 1971. MR 0284459 (44:1685)
- [6] -, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.
- [7] B. Stenstrom, Rings of quotients, Springer-Verlag, Berlin, Heidelberg and New York, 1975. MR 0389953 (52:10782)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A64, 16A80
Retrieve articles in all journals with MSC: 16A64, 16A80
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1981-0614872-7
Keywords:
Torsion theory,
-cocritical module,
-critical right ideal,
right
-primitive ring,
density theorem
Article copyright:
© Copyright 1981
American Mathematical Society