EXTENSIONS OF PURE POSITIVE FUNCTIONALS ON BANACH *-ALGEBRAS

R. S. DORAN AND WAYNE TILLER

Abstract. A known extension theorem for pure states on a Banach *-algebra with isometric involution is shown to hold for the wider class of Banach *-algebras with arbitrary, possibly discontinuous, involutions.

Let A be a Banach *-algebra with isometric involution and bounded approximate identity (e_n), and B a closed *-subalgebra of A containing (e_n). In [3] G. Maltese proved that if f is a pure state on B, then f admits a pure state extension to A if and only if f admits a positive linear extension to A. Our purpose here is to extend this result to Banach *-algebras with arbitrary, possibly discontinuous, involutions.

For basic definitions and results from the theory of Banach *-algebras and their representations see [1], [2], or [4].

The following lemma handles the case when the algebra A contains an identity.

Lemma 1. Let A be a unital Banach *-algebra, B a closed *-subalgebra of A containing the identity e, and suppose that f is a pure positive linear functional on B. Then f can be extended to a pure positive linear functional on A if and only if f has a positive linear extension to A.

Proof. We may assume without loss of generality that $f(e) = 1$. Indeed, if $\lambda > 0$, then λf is pure and positive if f is pure and positive. Our proof will be given in two steps:

I. A has continuous involution;

II. A has arbitrary involution.

Proof of I. Let P_A denote the set of positive functionals g on A satisfying $g(e) = 1$. Define P_B similarly. It is well known that a functional in P_A (or P_B) is pure (pure on B) if and only if it is an extreme point of P_A (P_B). Suppose, now, that f has a positive linear extension to A, and set $X = \{ g \in P_A : g|_B = f \}$; i.e., X is the set of all positive extensions of f. Then X is nonempty by assumption, and it is clearly convex. We show that X is compact in the relative weak *-topology. By the Banach-Alaoglu theorem it suffices to show that X is weak *-closed and norm bounded. Suppose that (g_n) is a net in X and that $g_n \to g$. Then by the definition of the weak *-topology, $g_n(x) \to g(x)$ for every $x \in A$; thus, if $x \in B$, then

Received by the editors April 29, 1980.

1980 Mathematics Subject Classification. Primary 46K05; Secondary 46L05.

Key words and phrases. Pure states, extensions, Banach *-algebra.

© 1981 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[g(x) = \lim a_i g_i(x) = \lim a_i f(x) = f(x) \] which implies \(g \in X \). Therefore, \(X \) is weak *-closed.

Now let \(g \in X \) be arbitrary; since \(x \to x^* \) is continuous there exists \(k > 0 \) such that \(\|x^*\| < k\|x\| \) for all \(x \) in \(A \). Then, by [4, pp. 214, 219],

\[|g(x)|^2 \leq g(e)g(x^*x) = g(e)A(x^*x) \leq \|x^*x\|^2 g(e) = k\|x\|^2, \]

where \(A(\cdot) \) denotes the spectral radius. Hence \(|g| < \sqrt{k} \) and \(X \) is norm bounded.

The Krein-Milman theorem now implies that \(X \) has extreme points. We denote the set of extreme points of \(X \), \(P_A \), and \(P_B \) by \(E(X) \), \(E(P_A) \), and \(E(P_B) \) respectively. Verification of the equality \(E(X) = X \cap E(P_A) \) will complete the proof of Part I.

Our proof follows that given in [3, p. 503].

It is clear that \(X \cap E(P_A) \subseteq E(X) \). Let \(g \in E(X) \) and suppose \(g = \frac{1}{2}(\phi + \psi) \), where \(\phi \), \(\psi \in P_A \). Then, taking restrictions, we obtain \(f = \frac{1}{2}(\phi|_B + \psi|_B) \). But \(\phi|_B \) and \(\psi|_B \) are in \(P_B \), and since \(f \in E(P_B) \), it follows that \(f = \phi|_B = \psi|_B \) which implies that \(\phi \) and \(\psi \) are in \(X \). Since \(g \) is an extreme point of \(X \) we have \(g = \phi = \psi \) which means that \(g \in E(P_A) \). Hence \(E(X) \subseteq X \cap E(P_A) \).

Proof of II. We now allow the involution to be arbitrary. If \(J \) denotes the Jacobson radical of \(A \), then \(A/J \) is a semisimple Banach *-algebra which, by Johnson’s uniqueness of the norm theorem [1, p. 130], has continuous involution. Hence the closure \(((B + J)/J)^{-} \) in \(A/J \) of the *-subalgebra \((B + J)/J \) is a Banach *-subalgebra of \(A/J \) containing the identity \(e + J \).

Let \(f' \) be the positive extension of \(f \) to \(A \), and define a function \(\tilde{f} : A/J \to \mathbb{C} \) by \(\tilde{f}(x + J) = f'(x) \). We note that \(\tilde{f} \) is well defined since \(f' \) is representable [4, p. 216] and \(J \) is contained in the reducing ideal. Furthermore, \(\tilde{f} \) is linear and positive and is therefore continuous since \(A/J \) has an identity. Moreover, if \(b \in B \), then \(\tilde{f}(b + J) = f'(b) = f(b) \). Let

\[\tilde{f} = \tilde{f}'|_{((B + J)/J)^{-}}. \]

Then \(\tilde{f} \) is a continuous positive linear functional on \(((B + J)/J)^{-} \) and \(\tilde{f}(b + J) = f(b) \) for every \(b \in B \). We assert that \(\tilde{f} \) is pure. Indeed, let \(\tilde{g} \) be an arbitrary positive functional on \(((B + J)/J)^{-} \) satisfying \(\tilde{g} \leq \tilde{f} \). Then \(\tilde{g}(b*b + J) \leq \tilde{f}(b*b + J) = f(b*b) \) for every \(b \in B \). Define a positive functional \(g \) on \(B \) by \(g(b) = \tilde{g}(b + J) \). Clearly \(g \leq f \), and since \(f \) is pure, it follows that \(g = \lambda f \), where \(0 < \lambda < 1 \). Hence, \(\tilde{g} = \lambda \tilde{f} \) on \((B + J)/J \). But \(\tilde{g} \) and \(\tilde{f} \) are both continuous, and thus it follows that \(\tilde{g} = \lambda \tilde{f} \) on all of \(((B + J)/J)^{-} \); therefore, \(\tilde{f} \) is pure.

By part I, \(\tilde{f} \) has a pure positive extension to \(A/J \) which we denote by \(h \). Define \(h' : A \to \mathbb{C} \) by \(h'(x) = h(x + J) \). Then \(h' \) is a positive functional on \(A \) and if \(b \in B \), then \(h'(b) = h(b + J) = \tilde{f}(b + J) = f(b) \). It remains only to show that \(h' \) is pure. Let \(g' \) be a positive functional on \(A \) satisfying \(g' < h' \). Then \(g'(x^*x) < h'(x^*x) = h(x^*x + J) \). Define a functional \(g \) on \(A/J \) by \(g(x + J) = g'(x) \); \(g \) is well defined since \(g' \) is representable. Clearly \(g \) is positive and \(g < h \); but \(h \) is pure, so \(g = \lambda h \) which implies \(g' = \lambda h' \). Hence \(h' \) is pure and the proof is complete.

The next lemma is well known from Banach *-algebras with isometric involution (see [2, 2.2.10, p. 34]). We give a simple proof for the case of an arbitrary involution. In what follows we assume that all bounded approximate identities are bounded by one.
Lemma 2. Let A be a Banach $*$-algebra with bounded approximate identity $\{e_a\}$, π a nondegenerate $*$-representation of A on a Hilbert space H, and let I denote the identity operator on H. Then $\lim_a \pi(e_a) = I$, where the limit is in the strong operator topology.

Proof. For each $x \in A$ we have $||\pi(e_a) - \pi(x)|| < ||\pi|| \cdot ||e_a x - x|| \to 0$. Hence $||\pi(e_a)\pi(x)\xi - \pi(x)\xi|| \to 0$ for every $x \in A$ and every $\xi \in H$. Since π is nondegenerate, the set $\pi(A)H$ is dense in H. Now let $\eta \in H$ be arbitrary, $\varepsilon > 0$, and set $M = \max(||\pi||, 1)$. Then there exists $\xi \in H$ and $x \in A$ such that $||\pi(x)\xi - \eta|| < \varepsilon/3M$ and there exists α_0 such that $\alpha > \alpha_0$ implies $||\pi(e_a)\pi(x)\xi - \pi(x)\xi|| < \varepsilon/3$. Then

$$||\pi(e_a)\eta - \eta|| \leq ||\pi(e_a)\eta - \pi(e_a)\pi(x)\xi|| + ||\pi(e_a)\pi(x)\xi - \pi(x)\xi|| + ||\pi(x)\xi - \eta||$$

$$< ||\pi|| \cdot ||e_a|| \cdot ||\eta - \pi(x)\xi|| + \varepsilon/3 + \varepsilon/3M < \varepsilon$$

completing the proof.

Theorem 3. Let A be a Banach $*$-algebra with bounded approximate identity $\{e_a\}$ and suppose B is a closed $*$-subalgebra of A containing $\{e_a\}$. Let f be a pure positive linear functional on B admitting a positive linear extension f' to A. Then f has a pure positive linear extension to A.

Proof. Since f and f' are representable, we can write $f(b) = (\pi(b)\xi | \xi)$ and $f'(x) = (\pi'(x)\xi | \xi')$ for all $b \in B$, $x \in A$, and suitable vectors ξ and ξ' in the respective spaces of π and π'. Then, by Lemma 2, $||\xi|| = ||\xi'|| = \lim_a f(e_a) = \lim_a f'(e_a) = ||\xi||^2 = ||\xi'||^2 = (\xi | \xi')$. Let A_e and B_e denote the Banach $*$-algebras obtained from A and B respectively by adjoining identities. Define $*$-representations π' and π of A_e and B_e respectively by $\pi'((x, X)) = \pi'(x) + XI$ and $\pi((b, X)) = \pi(b) + XI$, where I denotes the identity operator. Let $\tilde{f}'[(x, \lambda)] = (\pi'(x, \lambda)\xi | \xi')$ and $\tilde{f}[(b, \lambda)] = (\pi((b, \lambda))\xi | \xi)$. Then \tilde{f}' and \tilde{f} are positive functionals on A_e and B_e respectively and

$$\tilde{f}'[(b, \lambda)] = (\pi'[((b, \lambda))\xi | \xi']) = (\pi'(b)\xi | \xi') + \lambda(\xi | \xi')$$

$$= (\pi(b)\xi | \xi) + \lambda(\xi | \xi) = (\pi((b, \lambda))\xi | \xi) = \tilde{f}[(b, \lambda)]$$

for every $(b, \lambda) \in B_e$. Now f pure implies that π is irreducible [2, 2.5.4, p. 43]; hence π' is irreducible and thus \tilde{f}' is pure. By Lemma 1, \tilde{f}' has a pure positive extension, say g, to A_e. Hence there exists an irreducible $*$-representation π_g and a cyclic vector ξ_g such that $g((x, \lambda)) = (\pi_g((x, \lambda))\xi_g | \xi_g)$. So $\pi_g|_{A_e}$ is also irreducible, and therefore the functional g_A defined on A by $g_A(x) = (\pi_g|_{A_e}(x)\xi_g | \xi_g)$ is a pure positive functional on A. Moreover, $g_A(b) = g((b, 0)) = \tilde{f}((b, 0)) = (\pi((b, 0))\xi | \xi) = (\pi(b)\xi | \xi) = f(b)$.
REFERENCES

DEPARTMENT OF MATHEMATICS, TEXAS CHRISTIAN UNIVERSITY, FORT WORTH, TEXAS 76129