MARKOV OPERATORS AND QUASI-STONIAN SPACES

ROBERT E. ATALLA

Abstract. Let \(X \) be a quasi-stonian space, and let \(T \) be a \(\sigma \)-additive Markov operator on \(C(X) \). Ando proved that if all \(T \)-invariant probabilities are \(\sigma \)-additive, then \(T \) is strongly ergodic (and the space of fixed points is finite-dimensional). We prove that if the set of \(\sigma \)-additive \(T \)-invariant probabilities is weak-* dense in the set of all \(T \)-invariant probabilities, then \(T \) is strongly ergodic. This result is easy in case \(X \) is hyperstonian. Our method of proof is to use an idea of Gordon to "hyperstonify" part of our quasi-stonian space.

1. Introduction. A compact space is quasi-stonian if any of the following equivalent conditions hold: (1) if \(A \) is an open \(F_\sigma \) set, then closure\(^c A\) is clopen (= closed and open), (2) \(X \) is totally disconnected, and the algebra of clopen sets is \(\sigma \)-complete, (3) \(C(X) \) is conditionally \(\sigma \)-complete. A Borel measure \(m \) on \(X \) is \(\sigma \)-additive if \(f_n \in C(X), f_1 > f_2 > \cdots > 0, \) and \(\bigwedge f_n = 0 \) imply \(\lim m(f_n) = 0 \). The operator \(T \) on \(C(X) \) is \(\sigma \)-additive if \(\bigwedge T f_n = 0 \) whenever \(f_n \) is as above [An, Section 2]. Let \(\Sigma(X) \) be the Banach space of \(\sigma \)-additive elements of the dual space \(C(X)^* \).

If \(T \) is a Markov operator on \(C(X) \), i.e., \(T > 0 \) and \(Te = e \), where \(e \) is the unit function, let \(F(T) = \{ f \in C(X): Tf = f \}, F(T^*) = \{ m \in C(X)^*: T^* m = m \} \) (where \(T^* \) is adjoint of \(T \)), and \(P(T^*) \) be the set of probability measures in \(F(T^*) \).

Write \(T_n = (1/n)(I + \cdots + T^{n-1}) \). \(T \) is called strongly ergodic if for each \(f \) in \(C(X) \), \(\lim T_n f \) exists in the Banach space \(C(X) \). Our main result is

1.1. Theorem. If \(X \) is quasi-stonian, \(T \) a \(\sigma \)-additive Markov operator on \(C(X) \), and \(P(T^*) \cap \Sigma(X) \) is weak-* dense in \(P(T^*) \), then \(T \) is strongly ergodic.

1.2. Corollary [An, Theorem 2]. If \(X \) is quasi-stonian and \(T \) a \(\sigma \)-additive Markov operator on \(C(X) \), the following are equivalent:

(a) \(F(T^*) \subset \Sigma(X) \),
(b) \(T \) is strongly ergodic, and \(\dim(F(T)) = \dim(F(T^*)) < \infty \).

We note that Sato has extended Ando's theorem to include certain non-Markov positive operators [Sa, Theorem 1]. Sato's theorem is not in any obvious way a corollary to 1.1.

§2 is devoted to some general ergodic theory, and §3 to the proofs of 1.1 and 1.2.

1.3. Some concepts. A compact space is stonian if any of the following equivalent conditions hold: (1) if \(A \) is open, then closure\(^c A\) is open, (2) \(X \) is totally

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
disconnected, and the Boolean algebra of clopen sets is complete, (3) $C(X)$ is a conditionally complete lattice.

To define hyperstonian spaces, we need the concept of normal measure, i.e., a measure m which satisfies any of the equivalent conditions: (1) m is order-continuous, i.e., if $\{f_o\}$ is a directed family in $C(X)$ and $\mathbf{f} = \sup_{o} f_o$, then $\int \mathbf{f} dm = \lim_o \int f_o dm$, (2) if F is a closed nowhere dense set, then $m(F) = 0$ [Sch, p. 149, exercise 24]. Let $\Sigma_0 = \Sigma_0(X)$ be the Banach space of all normal measures.

A compact X is hyperstonian if any of the following equivalent conditions hold: (1) $C(X) = (\Sigma_0)^*$, i.e., $C(X)$ is the Banach space dual of Σ_0 (where Σ_0 has its norm topology), (2) X is stonian and Σ_0 is weak-* dense in $C(X)^*$, (3) X is stonian and the union of the support sets of measures in Σ_0 is dense in X [Sch, pp. 121–122].

Clearly, a normal measure is σ-additive, as we have defined it above. In the course of proving Theorem 1.1, we shall introduce a new topology under which, as we shall prove, the σ-additive measures become normal measures.

2. Criteria for ergodicity. If R is an operator on the Banach space B, let $R^* = \text{adjoint}(R)$, $F(R) = \text{fixed points of } R$, and $F(R^*) = \text{fixed points of } R^*$. Write $R_n = (1/n)(I + \cdots + R^{n-1})$. R is strongly ergodic if $\lim n R_n x$ exists for each x in B. If R is a contraction, then R is strongly ergodic iff $F(R)$ separates $F(R^*)$, i.e., $F(R^*) \cap F(R)^\perp = \{0\}$ [S2]. More generally, the separation criterion is valid if R satisfies

$$\|R_n\| < M (n > 1), \quad \text{and} \quad \lim \inf n^{-1}\|R^n\| = 0$$

[LL, p. 123]. Note that if (1) holds for R, then it holds for R^*, R^{**}, etc.

2.1. Proposition. If R satisfies (1), the following are equivalent:

(a) both R and R^* are strongly ergodic,

(b) $F(R^{**}) = \sigma(B^{**}, B^*)$-closure of $F(R)$,

(c) norm-closure($(I - R)^*(B^*)) = \text{weak-* closure}((I - R)^*(B^*))$.

Proof. First note that in general weak-* closure($(I - R)^*(B^*)) = F(R)^\perp$, and $\sigma(B^{**}, B^*)$-closure($F(R)$) $= F(R)^{\perp\perp}$.

(c) implies (b). In general, $F(R^{**}) = \{\text{norm-closure of } (I - R)^*(B^*)\}^{\perp}$, so if norm-closure($(I - R)^*(B^*)) = F(R)^\perp$, then $F(R^{**}) = F(R)^{\perp\perp}$.

(b) implies (c). If (c) fails, then there exists m in $F(R)^\perp \setminus \text{norm-closure of } (I - R)^*(B^*)$. By Hahn-Banach there exists F in B^{**} with $F(m) = 1$ and $F(n - R^* n) = 0$ for all n in B^*. Since F is in $F(R^{**}) \setminus F(R)^{\perp\perp}$, (b) fails.

(c) implies (a). In general, norm-closure($(I - R)^*(B^*)) \cap F(R^*) = \{0\}$, so if (c) holds, then $F(R)^\perp \cap F(R^*) = \{0\}$, and hence R is strongly ergodic, by the separation theorem. Hence there exists a projection S on $F(R)$ with kernel closure($I - R^*(B)$), and then S^* yields the decomposition $B^* = F(R^*) \oplus F(R)^\perp$.

But then (c) implies $B^* = F(R^*) \oplus \text{norm-closure}((I - R)^*(B^*))$, and this implies (by direct computation of averages) that R^* is strongly ergodic.

(a) implies (c). If R is strongly ergodic, then (as noted above) $B^* = F(R^*) \oplus F(R)^\perp$. If R^* is strongly ergodic, then $B^* = F(R^*) \oplus \text{norm-closure}((I - R)^*(B^*))$. Since norm-closure($(I - R)^*(B^*)) \subset F(R)^\perp$, we have equality.
In the next result, X will be a hyperstonian space, as defined in §1.3, with normal measures Σ_0. Note that if R is a σ-additive Markov operator, then $R^\ast(\Sigma_0) \subset \Sigma_0$. Let $S = R^\ast|\Sigma_0$. Then S is norm continuous on Σ_0, and $S^\ast = R$, $S^{**} = R^\ast$.

2.2. PROPOSITION. Let R be a σ-additive Markov operator on $C(X)$, where X is hyperstonian. Then R is strongly ergodic iff

$$F(R^\ast) = \text{weak-* closure}(F(R^\ast) \cap \Sigma_0(X)).$$

PROOF. Necessity. If R is strongly ergodic, then there exists a projection Q such that $R_n f \to Q f$ (f in $C(X)$). Q is easily seen to be σ-additive, and hence $Q^\ast(\Sigma_0(X)) \subset \Sigma_0(X)$. $F(Q^\ast)$ is weak-* closed and Q^\ast is weak-* continuous, so $F(R^\ast) = F(Q^\ast) = Q^\ast(C(X)) = \text{weak-* closure}(Q^\ast(\Sigma_0(X)))$. Since $Q^\ast(\Sigma_0(X)) \subset \Sigma_0(X)$ and $Q^\ast(\Sigma_0(X)) \subset F(R^\ast)$, we have $F(R^\ast) \subset \text{weak-* closure}(\Sigma_0(X) \cap F(R^\ast))$.

Sufficiency. Put $S = R^\ast|\Sigma_0(X)$. Then, since $R = S^\ast$, $R^\ast = S^{**}$, $C(X) = (\Sigma_0)^*$, and $C(X)^* = (\Sigma_0)^{**}$, the conclusion reads $F(S^{**}) = \sigma(\Sigma_0^*, \Sigma_0)$-closure of $F(S)$.

By "(b) implies (a)" of Proposition 2.1, it follows that S and $S^\ast = R$ are strongly ergodic.

3. PROOFS.

3.1. Proof of Theorem 1.1. First we need some topological observations. A closed set S is a P-set if the intersection of a countable number of neighborhoods of S is again a neighborhood of S, or, equivalently, if A is an open F_0 which is disjoint from S, then closure(A) is disjoint from S. By [Li, Lemma 1], if X is quasi-stonian and m a σ-additive regular Borel probability, then sup(m) is a P-set. (By sup(m) we mean its support, i.e., the smallest closed set S such that $m(S) = m(X) = 1).$ (To make the paper more self-contained, we sketch a proof. Let m be σ-additive, $S = \text{sup}(m)$, and A an open F_0 set with $A \cap S = \emptyset$. We must show closure$(A) \cap S = \emptyset$. Since X is compact and totally disconnected, $A = \bigcup A_n$, where the A_n are clopen sets. If f_n is the characteristic function of $A_1 \cup \cdots \cup A_n$, then $0 = \int f_n dm$ for all n. If f is the characteristic function of the clopen set closure(A), then $f = \bigvee f_n$, whence $0 = \int f dm$, and so closure$(A) \cap S = \emptyset$. Thus the support of each m in $P(T^*) \cap \Sigma(X)$ in the hypothesis of Theorem 1.1 is a P-set. Let $K = \text{closure}(\bigcup \{\text{sup}(m): m \in P(T^*)\})$. Since $P(T^*) \cap \Sigma(X)$ is weak-* dense in $P(T^*)$, we have

$$K = \text{closure}(\bigcup \{\text{sup}(m): m \in P(T^*) \cap \Sigma(X)\}).$$

Since X is quasi-stonian and each set in the union is a P-set, it follows from [V, Theorem 2] that K is also a P-set. (Again, we sketch a proof. Let $K = \text{closure}(\bigcup K_a)$, where the K_a are P-sets, and A an open F_0 with $A \cap K = \emptyset$. Suppose closure$(A) \cap K \neq \emptyset$. Since closure$(A)$ is open, it follows that closure$(A) \cap K_a \neq \emptyset$ for some index a. But $A \cap K_a = \emptyset$ and K_a is a P-set, so we have a contradiction.)

Now K is a T-invariant set, i.e., $f|K = 0$ implies $T f|K = 0$ [Si, Theorems 1.1, 1.3]. Hence T induces in a natural way an operator T_0 on $C(K)$. Namely if g is in
C(K) and x is in K, let \(\tilde{g} \) in C(X) be an extension of g, and let \(T_0 \tilde{g}(x) = Tg(x) = \int \tilde{g} \, d(T^* \delta_x) \). Since K is a P-set, \([A_2, \text{Proposition 3.5}]\) implies that if \(T_0 \) is strongly ergodic, then so is T. Thus it suffices to prove that the restricted operator \(T_0 \) is strongly ergodic.

Imitating a construction of Gordon [G], let

\[Y = \bigcup \{ \text{sup}(m) : m \text{ in } P(T^* \cap \Sigma(X)) \}. \]

We denote the original topology of X (and hence of Y and closure(Y) = K) by the name \(\alpha \). We shall show later that if \(f \) is in C(X), then \(Tf|_Y \) converges uniformly on Y, hence on K = closure(Y).

Following [G, Section 5], we introduce a new topology \(\delta \) on Y, having as base of open sets all sets of the form \(X_m = \text{sup}(m) \), where m is any \(\sigma \)-additive measure whose support is contained in Y. We show that \(X_m \cap X_p = X_q \) for some q in \(\Sigma(X) \) as follows: since \(X_m \) is a P-set and \(X_p \) a support set, \(X_m \cap X_p \) is \(\alpha \)-clopen in \(X_p \). If \(f \) is the characteristic function of \(X_m \cap X_p \), put \(dq = fdp \) \([A_1, \text{Theorem 1}]\). Clearly q is \(\sigma \)-additive. Moreover since \(X_m \cap X_p \) is \(\alpha \)-open in \(X_p \) for each \(X_m \), \(\delta \) is a weaker topology on \(X_p \) than \(\alpha \). Since \(\delta \) is Hausdorff and \((X_p, \alpha) \) is compact, \((X_p, \delta) \) is compact and \(\alpha = \delta \) on \(X_p \). Thus, each \(X_p \) is open and compact in the \(\delta \)-topology.

(To show \(\delta \) is Hausdorff, let \(x \neq y \) in \(X_p \), and find A, B clopen and disjoint in \((X_p, \alpha) \) such that \(x \) is in A and \(y \) is in B. Then \(\chi_A dp \) and \(\chi_B dp \) define members of \(\Sigma \) with disjoint supports containing \(x \) and \(y \) respectively.)

Let \(\tilde{Y} \) be the Stone-\(\check{C} \)-ech compactification of \((Y, \delta) \). To show that \(\tilde{Y} \) is hyperstotional we depart from Gordon’s procedure [G, Section 6] and show (i) \(Y \), and hence \(\tilde{Y} \), is extremally disconnected, and (ii) the union of the supports of normal measures is dense in \(\tilde{Y} \) \([S\check{c}, \text{p. 121}]\).

For (i), we shall be using the \(\delta \)-topology except where otherwise mentioned. Let \(V \) be open and let \(x \) be in closure(\(V \)). We must show \(x \) is in interior(closure(\(V \))). Fix an \(X_m \) containing \(x \). Then \(x \) is in \(V \cap X_m \), which is an open subset of \(X_m \). If \(X_p \) is any basic neighborhood of \(x \), \(X_p \cap (V \cap X_m) \) contains \(x \) and is an open subset of \(V \cap X_m \), and hence \(x \) is interior to \(V \cap X_m \) in the subspace topology of \(X_m \). But on \(X_m \), \(\alpha = \delta \), and \(X_m \) is extremally disconnected for \(\alpha \) \([S\check{e}, \text{Theorem 2.2}]\), so \(x \) is interior to the closure in \(X_m \) of \(V \cap X_m \). Hence there exists a basic open set \(X_q \) with \(x \in X_q \subset X_m \) and \(X_q \subset X_m \)-closure(\(V \cap X_m \)) \(\subset Y \)-closure(\(V \)). Thus, \(x \) is interior to closure(\(V \)).

For (ii) we show that if \(m \) is in \(P(T^*) \cap \Sigma(X) \), then with respect to the \(\delta \)-topology on \(\tilde{Y} \) it becomes a normal measure. As noted in §1.3, it suffices to show that if \(F \) is a \(\delta \)-closed nowhere dense set, then \(m(F) = 0 \). Let \(S = X_m \), a \(\delta \)-clopen set. Since \(S \) is open, \(F \cap S \) is closed and nowhere dense in the relative \(\delta \)-topology of \(S \); and since the relative \(\alpha \) and \(\delta \)-topologies coincide on \(S \), \(F \cap S \) is closed and nowhere dense in the relative \(\alpha \)-topology of \(S \). We now show that there exists in \(X \) an \(\alpha \)-closed \(G_\delta \) set \(W \), \(\alpha \)-nowhere dense in \(X \), such that \(F \cap S \subset W \cap S \). Let \(V_n \) be \(\alpha \)-open sets with \(F \cap S \subset V_n \) and \(m(F) = m(F \cap S) = \lim m(V_n) \). Since \(F \cap S \) is \(\alpha \)-closed, hence \(\alpha \)-compact, we may assume each \(V_n \) is \(\alpha \)-clopen, and \(Z = \bigcap V_n \) is an \(\alpha \)-closed \(G_\delta \) set with \(F \cap S \subset Z \) and \(m(Z \setminus F) = 0 \). Now \(Z \cap S \) is
\(\alpha\)-nowhere dense in \(S\). (For otherwise there exists \(\alpha\)-clopen \(B\) with \(\emptyset \neq B \cap S \subset Z \cap S\). \(B \cap S \not\subset F \cap S\), since \(F \cap S\) is \(\alpha\)-nowhere dense in \(S\), so \((B \setminus F) \cap S \neq \emptyset\), whence \(m(B \setminus F) > 0\). But \((B \setminus F) \cap S \subset (Z \setminus F) \cap S\), so \(m(Z \setminus F) > 0\), a contradiction.) Since \(X\) is quasi-stonian, the set \(A = \text{interior}(Z)\) is clopen. Since \(Z \cap S\) is nowhere dense in \(S\), \(A \cap S = \emptyset\), so \(W = Z \setminus A\) is a nowhere dense \(\alpha\)-closed \(G_{\delta}\) with \(W \cap S = Z \cap S \not\subset F \cap S\).

Finally we show \(m(W) = 0\), and hence \(m(F) = 0\). But \(W\) has the form \(W = \cap A_n\), where the \(A_n\) are \(\alpha\)-clopen, \(A_1 \supset A_2 \supset \ldots\). If \(f_n\) is the characteristic function of \(A_n\), then since \(\text{interior}(W) = \emptyset\), we have \(\bigwedge f_n = 0\), and so \(m(W) < \lim f_n dm = 0\). (ii) is proved.

We now show that our original operator \(T\) induces an operator \(S\) on \(C(\tilde{Y})\). If \(m\) is in \(P(T^*) \cap \Sigma(Y)\), then \(f\) in \(\delta\)-continuous function on \(Y\) and \(x\) in \(X_m\), \(f|X_m\) is \(\alpha\)-continuous on \(X_m\), and we define \(Sf(x) = \int f d(T^*\delta_x)\). Then \(Sf\) is defined on all \(\tilde{Y}\) as the Stone-Čech extension.

We complete the proof by showing that \(S\) is uniformly ergodic, whence, if \(f\) is in \(C(K)\), then \(T_n f|K\) converges uniformly, and hence so does \(T_n f|K\). To apply Proposition 2.2, we must prove \(P(S^*) \cap \Sigma_0(Y)\) is weak-* dense in \(P(S^*)\). (Note that the \(\delta\)-topology introduces no new regular Borel measures on \(Y\). For if \(m\) is one whose support is contained in \(Y\), then since each \(X_p\) is a \(\delta\)-clopen set, \(m(X_p) > 0\) whenever \(\sup(m) \cap X_p \neq \emptyset\). Hence \(\text{support}(m)\) is contained in a countable collection of the \(X_p\) sets. The \(\alpha\)-closure of the union of this collection is contained in \(Y\), and is also an \(X_p\) set: if \(X_{p(i)}\) are the sets in question, just let \(p = \sum 2^{-i} p(i)\).)

Suppose \(P(S^*) \cap \Sigma_0(Y)\) is not weak-* dense in \(P(S^*)\), and let \(m_0\) be in \(P(S^*)\), but not in \(\text{close}(P(S^*) \cap \Sigma_0(Y))\). By separation [D, p. 22], there exists \(f\) in \(C(Y)\) such that \(p(f) < -1\) for all \(p\) in \(P(S^*) \cap \Sigma_0(Y)\), and \(m_0(f) > 0\). Now \(\{S_n: n > 1\}\) is a norm bounded subset in \(C(Y)\), and since \(C(\tilde{Y})\) is the dual of \(\Sigma_0(Y)\), it is precompact. Let \(g\) in \(C(Y)\) be a \(\sigma(\Sigma_0(Y), C(\tilde{Y}))\) cluster point, and let \(S_{n(i)}: i \in I\) be a subset such that \(\int S_{n(i)} dp \to \int g dp\) for all \(p\) in \(\Sigma_0(Y)\). Hence \(\int g dm_0 > 0\) and \(\int f g dp \to -1\) for all \(p\) in \(\Sigma_0(Y)\). Further, \(S g = g\). (Proof: \(\|S_{n(i)} g - S_{m(j)} g\| < n(i)^{-1}\|S_{m(j)} g - g\| < 2n(i)^{-1}\|g\| \to 0\), whence \(\int S g dp = \int g dp\) for all \(p\) in \(\Sigma_0(Y)\). Since, as noted above, \(\Sigma_0(\tilde{Y})\) is weak-* dense in \(C(\tilde{Y})^*\), we have \(S g = g\).) If \(p\) is an extreme point of \(P(S^*)\), then \(g\) is constant on \(\text{sup}(p)\) [S1, Theorem 1.11]. If, further, \(\sup(p) \subset X_m\) for some \(m\) in \(P(S^*) \cap \Sigma_0(Y)\), then since by hypothesis \(P(T^*) \cap \Sigma(Y)\) is dense in \(P(T^*)\) and the \(\alpha\)-topology on \(X_m\) is the same as the \(\delta\)-topology, it follows that \(p(g) < -1\) and hence \(g < -1\) on \(\text{sup}(p)\). By Krein-Milman, \(m\) is in the weak-* closed convex hull of the extreme points of \(P(S^*)\), and it is elementary to show that these extreme points may be assumed to have supports contained in \(\text{sup}(m) = X_m\). Hence

\[X_m = \text{closure}(\bigcup \{\sup(p): p \text{ extreme}, \sup(p) \subset X_m\}),\]

whence \(g < -1\) on \(X_m\). It follows that \(g < -1\) on \(Y\), and, by density, on \(\tilde{Y}\). But this contradicts \(m_0(g) > 0\). This proves \(P(S^*) \cap \Sigma_0(Y)\) is weak-* dense in \(P(S^*)\), and we are through.
3.2. Proof of the corollary.

(a) implies (b). If (a), then the theorem implies that T is strongly ergodic, and we must show that $\dim F(T) < \infty$. Since by [S, Theorem 1.11], $\dim F(T) < \text{number of extreme points in } P(T^*)$, it suffices to prove that the latter set is finite. Suppose m_1, m_2, \ldots are distinct extreme points, and let $S_i = \sup(m_i)$. Since T is strongly ergodic, the sets S_i are pairwise disjoint. (By [S, Theorem 2.7], invariant functions separate the m_i, and by [S, Theorem 1.11], an invariant function is constant on each S_i.) Since $P(T^*) \subset \Sigma(X)$, the S_i are P-sets, and hence a routine induction gives a pairwise disjoint sequence of clopen sets A_i with $S_i \subset A_i$. Define f_i in $C(X)$ to be the characteristic function of $B_i = \text{closure } \bigcup_{n \geq 1} A_n$. Then $\bigwedge f_i = 0$, while if m is a weak-* cluster point of $\{m_i\}$, then $\int f_i \ dm = 1$ for all n. Thus m is an element of $P(T^*)$ which is not σ-additive, contrary to hypothesis.

(b) implies (a). This is the easy part; see [An].

Added in proof. In his thesis, D. Axmann gives a treatment of Ando’s condition in the context of vector lattices, and shows that under this condition T is actually ergodic in the uniform operator topology (Struktur und Ergodentheorie irreduzibler operatoren auf Banachverbänden, Dissertation, Eberhard-Karls-Universität zu Tübingen, 1980, Chapter 4). I do not know whether our condition implies uniform ergodicity.

References

Department of Mathematics, Ohio University, Athens, Ohio 45701