ADMISSIBLE KERNELS FOR STARSHAPED SETS

Marilyn Breen

Abstract. Steven Lay has posed the following interesting question: If \(D \) is a convex subset of \(\mathbb{R}^d \), then is there a starshaped set \(S \supset D \) in \(\mathbb{R}^d \) whose kernel is \(D \)? Thus the problem is that of characterizing those convex sets which are admissible as the kernel of some nonconvex starshaped set in \(\mathbb{R}^d \). Here Lay's problem is investigated for closed sets, and the following results are obtained: If \(D \) is a nonempty closed convex subset of \(\mathbb{R}^2 \), then \(D \) is the kernel of some planar set \(S \supset D \) if and only if \(D \) contains no line. If \(D \) is a compact convex set in \(\mathbb{R}^d \), then there is a compact set \(S \supset D \) in \(\mathbb{R}^d \) whose kernel is \(D \).

1. Introduction. Let \(S \) be a subset of \(\mathbb{R}^d \). Set \(S \) is said to be starshaped if and only if there is some point \(p \) in \(S \) such that \([p, x] \subseteq S\) for every \(x \) in \(S \). The set of all such points \(p \) is called the (convex) kernel of \(S \), denoted \(\ker S \). While many interesting results have been obtained for starshaped sets and their kernels [2], a new problem has been posed recently by Steven Lay [1]. If \(D \) is a convex subset of \(\mathbb{R}^d \), then is there a starshaped set \(S \supset D \) in \(\mathbb{R}^d \) whose kernel is \(D \)? That is, can we characterize those convex sets which are admissible as the kernel of some nonconvex starshaped set in \(\mathbb{R}^d \)? The question may be answered quickly in various special cases. In particular, when \(D \) is not a \((d - 1)\)-flat and \(D \) has dimension less than \(d \), it is not hard to construct an appropriate set \(S \). Similarly, when \(D \) is a polytope, such an \(S \) exists. However, the problem for arbitrary \(D \) is both intriguing and challenging. Here we begin by considering a closed convex set \(D \) in the plane, and constructions for \(S \) are given when \(D \) contains no line. If \(D \) is closed and contains a line, then it is proved that no such set \(S \) exists. Finally, extensions from \(\mathbb{R}^2 \) to \(\mathbb{R}^d \) are obtained with certain modifications.

The following definitions and terminology will be used throughout the paper. Let \(S \) be a subset of \(\mathbb{R}^d \). A point \(x \) in \(S \) is said to be a point of local convexity of \(S \) if and only if there is some neighborhood \(N \) of \(x \) such that \(N \cap S \) is convex. In case \(S \) fails to be locally convex at point \(q \) in \(S \), then \(q \) is called a point of local nonconvexity (lnc point) of \(S \). For \(S \) a 2-dimensional convex set, line \(L \) is said to support \(S \) if and only if \(L \) contains no interior point of \(S \) and the distance from \(L \) to \(S \) is zero. (Notice that such a line need not meet \(S \).) The terms convex, affine, closure, boundary, and interior of set \(S \), respectively. When \(S \) is convex, \(\dim S \) will be the dimension of set

1 This research was sponsored in part by an Arts and Sciences summer fellowship from the University of Oklahoma.

Received by the editors August 11, 1980 and, in revised form, October 7, 1980.
1980 Mathematics Subject Classification. Primary 52A10, 52A30, 52A20.
Key words and phrases. Starshaped sets, convex kernel.
S. For distinct points x and y, dist(x, y) will represent the distance from x to y,
L(x, y) will represent the line determined by x and y, and R(x, y) will be the ray
eaming from x through y.

2. The results in \(\mathbb{R}^2 \). We begin with the following theorem for compact convex
sets in \(\mathbb{R}^2 \).

Theorem 1. Let \(D \) be any nonempty compact convex set in \(\mathbb{R}^2 \). Then there is a
compact set \(S \supseteq D \) in \(\mathbb{R}^2 \) with \(\text{ker} \, S = D \).

Proof. We begin by disposing of the cases for \(\dim D < 2 \). If \(D \) is a singleton set,
let \(S \) be the union of two closed disks whose intersection is exactly \(D \). If \(D \) is a
segment \([x, y]\), choose \(x_0, y_0 \) on \(L(x, y) \) with \(x_0 < x < y < y_0 \), choose \(z \notin L(x, y) \),
and let \(S = \text{conv}(x, y, z) \cup [x_0, y_0] \).

Throughout the remainder of the argument, we assume that \(D \) is a full 2-dimen-
sional set. For convenience of notation, we suppose that \(D \) lies in the unit disk \(\{z: |z| = 1\} \), with the origin \(\theta \) interior to \(D \). Moreover, assume that \(D \) is oriented so
that it has a horizontal line of support which intersects the set on the positive y
axis. Let \(T_L \) and \(T_R \) denote the vertical lines which support \(D \); \(T_L \) in the left open
halfplane, \(T_R \) in the right open halfplane. For each point \(x \notin D \), there are two
distinct segments \((x, y_1)\) and \((x, y_2)\) disjoint from \(D \) whose lines support \(D \) at \(y_1 \)
and \(y_2 \), respectively. We call \([x, y_1]\) the left supporting segment from \(x \) to \(D \) and
call \([x, y_2]\) the right supporting segment from \(x \) to \(D \) provided that the order along
\(\partial \text{conv} \, (y_1, x, y_2) \) in a clockwise direction from \(y_1 \) gives \(y_1, x, y_2 \). A parallel
definition holds for left and right supporting lines \(L(x, y_1) \) and \(L(x, y_2) \).

We will construct set \(S \) inductively, using an increasing sequence of closed sets.
Choose a point \(p_1 \) not in \(D \) and in the open convex region bounded by \(T_L \) and \(T_R \).
For the sake of simplicity, let \(p_1 \) be a point on the y axis for \(y > 2 \). Define
\(S_1 = \text{conv}(p_1 \cup D) \). Let \(w_1 \) be the midpoint of the left supporting segment \([p_1, s_1]\)
from \(p_1 \) to \(D \). Let \(T_1 \) be the right supporting line from \(w_1 \) to \(D \) at point \(s_2 \). Choose
the point \(u_1 \) of \(T_1 \) such that \(w_1 \) is between \(u_1 \) and \(s_2 \) and \(\text{dist}(w_1, u_1) \) is half the
distance from \(w_1 \) to \(T_L \). Then \((w_1, u_1) \cap S_1 = \emptyset \). Relabel peak \(p_1 \) by \(p_{21} \), peak \(u_1 \) by
\(p_{22} \equiv b_2 \), and define \(S_2 = \cup \{\text{conv}(p_{2i} \cup D): 1 < i < 2\} \). Label the inc point \(w_1 \)
of \(S_2 \) by \(s_{21} \), and let \(s_{22} \) be the point of \(D \) such that \([p_{22}, s_{22}] \) is the left supporting
segment from \(p_{22} \) to \(D \).

Inductively, for \(k > 2 \) assume that consecutive peaks \(p_{k1}, p_{k2}, \ldots, p_{kj} \equiv b_k \) are
defined, \(j = 2^{k-1} \), that \(S_k = \cup \{\text{conv}(p_{ki} \cup D): 1 < i < j\} \), and that
\(s_{k1}, s_{k2}, \ldots, s_{kj} \) are defined. We obtain \(S_{k+1} \) as follows. For each \(i, 1 < i < j, \) let
\(w_{ki} \) be the midpoint of segment \([p_{ki}, s_{ki}]\). Let \(T_{ki} \) be the right supporting line from
\(w_{ki} \) to \(D \). For \(i \neq j \), choose point \(u_{ki} \) of \(T_{ki} \) whose distance to \(w_{ki} \) is half the distance
from \(w_{ki} \) to segment \([p_{ki}, p_{k,i+1}]\) along \(T_{ki} \) and \((p_{ki}, u_{ki}) \cap S_k = \emptyset \). For \(i = j \),
choose point \(u_{kj} \) of \(T_{kj} \) such that \(\text{dist}(w_{kj}, u_{kj}) = \frac{1}{2} \text{dist}(w_{kj}, T_L) \). (Recall that \(T_L \) is the
left vertical line of support to \(D \).) Relabel peaks \(p_{k1}, u_{k1}, p_{k2}, u_{k2}, \ldots, p_{kj}, u_{kj} \) by
\(p_{k+1,1}, p_{k+1,2}, \ldots, p_{k+1,2j} \equiv b_{k+1} \), respectively, and refer to \(p_{k+1,i} \) and \(p_{k+1,i+1} \) as
consecutive peaks, \(1 < i < 2j - 1 \). Define \(S_{k+1} = \cup \{\text{conv}(p_{k+1,i} \cup D): 1 < i < 2j\} \). For future reference, notice that for each peak \(p_{k+1,i} \) of \(S_{k+1} \) and for \(M \) a
supporting line from $p_{k+1,i}$ to D, sets \{ $p_{k+1,1}, \ldots, p_{k+1,i-1}$ \} and \{ $p_{k+1,i+1}, \ldots, p_{k+1,2j}$ \} lie in opposite open halfplanes determined by M. Thus no point $p_{k+1,i}$ is captured by a remaining convex hull \text{conv}(p_{k+1,m} \cup D), m \neq i$. Note also that the slopes of the right supporting lines to D from consecutive peaks of S_{k+1} form an increasing sequence, as do the slopes of the left supporting lines. Finally, observe that \((p_{k+1,i}, p_{k+1,i+1}) \cap S_{k+1} = \emptyset \) for $1 < i < 2j - 1$.

Continuing our inductive construction, label the inc points of S_{k+1} by \(s_{k+1,1}, s_{k+1,2}, \ldots, s_{k+1,2j-1} \), where $s_{k+1,i}$ is the inc point of \text{conv}(p_{k+1,i} \cup D) \cup \text{conv}(p_{k+1,i+1} \cup D), 1 < i < 2j - 1$. And let $s_{k+1,2j}$ be the point of D such that \[[p_{k+1,2j}, s_{k+1,2j}] \] is the left supporting segment from $p_{k+1,2j} = b_{k+1}$ to D. By our inductive construction, S_n is defined for every natural number n. We define set $S_L = \cup_{1 \leq n} S_n$.

Now begin again with set $S_1 = S_1$ and apply the construction above to the right halfplane, using right supporting segments (instead of left), left supporting lines (instead of right), and line T_R (instead of T_L). We thereby obtain an increasing sequence of sets \{ S'_n \}, and define set $S_R = \cup_{1 \leq n} S'_n$. Finally, define $S = \text{cl}(S_L \cup S_R)$. Observe that S_R contributes no points to S_L in the left halfplane, S_L contributes none to S_R in the right.

Clearly S is a compact set and $S \neq D$. We assert that $\ker S = D$. It is easy to show that $D \subseteq \ker S$, so we will establish only the reverse inclusion. As a preliminary step, we show that for p one of the peaks defined above, say $p = p_{ki}$, p is an inc point of S. Without loss of generality, assume that $p \in S_L$. Let N be any circular neighborhood of p. By our construction, N contains another peak, say $q = p_{im}$, where $l > k$ and where q and θ are in opposite open halfplanes determined by line $L(p_{ki}, s_{ki})$. Moreover, q may be selected so that p and q are consecutive peaks for S. Then by a previous comment, $(p, q) \cap S_i = \emptyset$. Select r so that p, r, q are consecutive peaks for S_i. For $n > l + 1$, every peak $t \neq p, r, q$ of S_n which lies in the convex region determined by rays $R(\theta, p)$ and $R(\theta, q)$ must lie in the open halfplane determined by $L(p, r)$ and containing θ and in the open halfplane determined by $L(r, q)$ and containing θ. Thus \text{conv}(t \cup D)$ is disjoint from \text{conv}(p, r, q), and such a peak t cannot contribute any point to \text{conv}(p, r, q)$ in S_n or in S. Using previous comments, it is easy to see that the remaining peaks of S_n cannot contribute any point to \text{conv}(p, r, q)$ either, and we conclude that $(p, q) \cap S = \emptyset$. Hence p is indeed an inc point for S, and our preliminary result is established.

Now we are able to show that $\ker S \subseteq D$. Let $x \in S \sim D$ to prove that $x \notin \ker S$. Without loss of generality, assume that x is in the closed left halfplane. Recall that, for each $k \geq 2$, b_k denotes the last peak of S_k in our ordering, and clearly the sequence \{ b_k \} converges to a point of $D \cap T_L$. By our construction, it is not hard to see that $T_L \cap S = T_L \cap D$, so $x \notin T_L$. Therefore, there must be some peak p in the open left halfplane such that the right supporting segment from p to D has slope greater than the slope of the right supporting segment E from x to D. That is, x and θ lie in opposite open halfplanes E_1 and E_2, respectively, determined by the line of E. Again by our construction, there is a sequence of
distinct peaks in E_1 converging to a point of E, and it is not hard to see that this sequence is eventually in $\text{int conv}(p \cup x \cup D)$. Hence for n sufficiently large, $\text{int conv}(p \cup x \cup D)$ necessarily contains peaks of S_n, and since such peaks are linc points of S, $\text{int conv}(p \cup x \cup D)$ must contain points in $\sim S$. Therefore, $x \cup D \subset \ker S$, and since $D \subset \ker S$, this implies that $x \not\in \ker S$. We conclude that $\ker S \subset D$ and the sets are equal, completing the proof of Theorem 1.

In case D contains a ray but no line, the argument above may be adapted to obtain the following result.

Theorem 2. Let D be any closed unbounded convex set in \mathbb{R}^2 which contains no line. Then there is a closed set $S \neq D$ in \mathbb{R}^2 with $\ker S = D$.

Proof. If D has dimension less than 2, a variation of our opening argument in Theorem 1 yields the result. Hence assume that D is fully 2-dimensional. For convenience, orient D so that $\text{int } D$ contains the negative y axis, D does not contain either the positive or the negative x axis, and D has a horizontal line of support at the origin. For point $x \notin D$, there are two distinct supporting lines from x to D (which may or may not meet D). The definitions of left and right supporting lines from x to D (in Theorem 1) may be adapted in an obvious manner to this case. When such a supporting line meets D, we may talk about the corresponding left or right supporting segment from x to D.

We proceed as follows to define set S. In case D is a cone, D may be represented by $\bigcup \{ R(v, c) : c \in C \}$ where C is some compact convex set not containing point v. Then it is easy to construct S by creating an linc point appropriately at v. For the remainder of the argument, we will assume that D is not a cone. Select points z_L and z_R in $\text{bdry } D$, z_L in the left open halfplane, z_R in the right. Also, since D is not a cone, we may choose these points so that at least one of the segments $[z_L, \theta]$ and $[z_R, \theta]$ is not in $\text{bdry } D$. Let T_L and T_R denote lines which support D at z_L and z_R, respectively, and let A denote the open convex region determined by T_L and T_R and containing $\text{int } D$. Either A will be the interior of a cone whose vertex lies in the upper halfplane or A will be an open parallel strip.

Define B to be the bounded component of $(\text{bdry } D) \sim (T_L \cup T_R)$. By our choice of z_L and z_R, it is clear that B is not empty and $\text{cl } B$ contains the origin. Furthermore, if F denotes the component of $A \sim D$ whose boundary contains B, then for x in F, each supporting segment from x to D necessarily meets $\text{cl } B$. Select point p_1 in F and define $S_1 = \text{conv}(p_1 \cup D)$. Using p_1, T_L, and T_R defined above, employ the inductive construction in Theorem 1. At each stage of the construction, every peak p_k will lie in the region F. With minor modifications in terminology, the previous argument may be duplicated to define the closed set S and to verify that $\ker S = D$. This completes the proof of Theorem 2.

If the closed set D contains a line, then no appropriate set S exists, as our final theorem reveals.

Theorem 3. Let D be any convex set in \mathbb{R}^2 which contains a line L. Then D is the kernel of some planar set $S \neq D$ if and only if there is a line M in $\text{bdry } D$ with $M \cap D = \emptyset$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. We dispose of the easy case first. If bdry D contains such a line M, select distinct points p and q in M. Defining $S = D \cup \{p, q\}$, standard arguments reveal that $D = \ker S$.

To establish the converse statement, assume that no such line M exists. If $D = \mathbb{R}^2$, the result is immediate, so suppose that this is not the case. Then clearly bdry $D = H \cup J$ where H and J are lines parallel to L (and not necessarily distinct). Furthermore, by hypothesis, $H \cap D \neq \emptyset$ and $J \cap D \neq \emptyset$. Let S denote any planar set distinct from D with $D \subseteq \ker S$. (Clearly \mathbb{R}^2 itself is such a set.) To finish the proof of Theorem 3, it suffices to show that ker $S \subseteq D$.

In case $S \subseteq \text{cl } D$, then since $H \cap D \neq \emptyset$ and $J \cap D \neq \emptyset$, it is easy to show that S is convex. Thus ker $S = S \subseteq D$, and the theorem is proved. Therefore, throughout the remainder of the argument we may restrict our attention to the case in which $S \nsubseteq \text{cl } D$.

The following notation will be useful. For each point z in $S \sim L$, let M_z denote the line through z and parallel to L, with P_z the open parallel strip bounded by M_z and L. Notice that since $L \cap \text{cl } D \subseteq \ker S$, $P_z \subseteq S$.

To show that ker $S \subseteq D$, select a point x in $S \sim \text{cl } D \neq \emptyset$. There is a neighborhood N of x disjoint from $\text{cl } D$, and we may choose some point x' in $N \cap P_x \subseteq S \sim \text{cl } D$. We assert that $x' \in \ker S$: Choose $y \in S$ to show that $[x', y] \subseteq S$. If $y \in L \subseteq \ker S$, then it is immediate that $[x', y] \subseteq S$, so we assume that $y \in S \sim L$. Then $P_x \cup P_y \cup L$ is a (not necessarily open) parallel strip in S with x' in its interior and y in its closure. Thus $[x', y] \subseteq P_x \cup P_y \cup L \subseteq S$ and $[x', y] \subseteq S$. We conclude that $x' \in \ker S \sim \text{cl } D \subseteq \ker S \sim D$ and ker $S \subseteq D$. The proof of Theorem 3 is established.

We conclude the planar case with two corollaries. The first may be proved using an argument from Theorem 3 above.

Corollary 1. Let D be any convex set in \mathbb{R}^2 which contains a line. Then D is not the kernel of any planar set which property contains $\text{cl } D$.

The second corollary, our characterization theorem, is an immediate consequence of Theorems 1, 2, and 3.

Corollary 2. Let D be a nonempty closed convex subset of \mathbb{R}^2. Then D is the kernel of some planar set $S \neq D$ if and only if D contains no line.

Notice that Corollary 2 above fails without the requirement that D be closed, as Theorem 3 reveals.

3. The results in \mathbb{R}^d. Theorem 1 may be modified to obtain the following extension from \mathbb{R}^2 to \mathbb{R}^d.

Theorem 4. Let D be a nonempty compact set in \mathbb{R}^d, $d > 2$. Then there is a compact set $S \neq D$ in \mathbb{R}^d with ker $S = D$.

Proof. The inductive construction for S is outlined below. We restrict our attention to \mathbb{R}^d for $d > 3$, and assume that D is fully d-dimensional. Consider the family \mathcal{F} of closed halfspaces of the form $[a : a] = \{z \in \mathbb{R}^d \text{ and } a \cdot z > a\}$,
where \(\alpha \) is any \(d \)-dimensional vector having rational coordinates and where \(a \) is any rational scalar. It is known that \(\mathcal{F} \) is an intersectional basis for the set of compact convex subsets of \(\mathbb{R}^d \). Furthermore, if we define \(\mathcal{K} \equiv \{ F \in \mathcal{F} \text{ and } D \subseteq F \} \), then \(D = \bigcap \{ F : F \in \mathcal{K} \} \). Members of \(\mathcal{K} \) may be indexed \(H_1, H_2, \ldots \). For convenience of notation, we will let \(J_i \) denote the supporting hyperplane for \(H_i \), \(1 < i < \infty \).

To begin the induction, select the first hyperplane \(J_1 \) and choose a point \(x_1 \) in \(J_1 \sim D \neq \emptyset \). Define \(S_1 = \text{conv}(x_1 \cup D) \). Choose a real number \(f_1 \) so that \(0 < f_1 < \frac{1}{2} \text{dist}(x_1, D) \), and let \(T_1 = \text{conv}(x_1 \cup N(D, f_1)) \), where \(N(D, f_1) = \{ z : \text{dist}(z, D) < f_1 \} \).

Inductively, assume that for \(k > 2 \), \(x_1, \ldots, x_k, S_1, \ldots, S_k, f_1, \ldots, f_k \) and \(T_1, \ldots, T_k \) are defined, where

\[
S_k = \bigcup_{1 < i < k} \{ \text{conv}(x_i \cup D) \},
\]

\[
0 < f_k < \frac{1}{2} \min \{ \text{dist}(x_i, \text{conv}(x_j \cup D)) : i \neq j, 1 < i, j < k \},
\]

\[
T_k = \bigcup_{1 < i < k} \{ \text{conv}(x_i \cup N(D, f_k)) \},
\]

and

\[
x_i \notin \text{conv}(x_j \cup N(D, f_k)) \text{ for } i \neq j, 1 < i, j < k.
\]

We would like for hyperplane \(J_{k+1} \) to meet \(\text{int} \ N(D, f_k) \). If this does not occur, then by our choice of \(\mathcal{K} \), there must be a halfspace \(H_n \) in \(\mathcal{K} \), \(n > k + 1 \), for which the corresponding hyperplane \(J_n \) is parallel to \(J_{k+1} \) and for which \(J_n \cap \text{int} \ N(D, f_k) \neq \emptyset \). Note that \(H_n \subseteq H_{k+1} \). Remove \(J_{k+1} \) and \(H_{k+1} \) from our list and replace them with \(J_n \) and \(H_n \), respectively. Then renumber appropriate \(J \) and \(H \) sets so that their indices are consecutive. (That is, \(J_n \) will be renamed \(J_{k+1} \) and \(J_{n+m} \) will be renamed \(J_{n+m-1} \) for \(m > 1 \). Corresponding \(H \) sets will be renamed, too.)

Now \(J_{k+1} \cap \text{int} \ N(D, f_k) \neq \emptyset \). Since \(d > 3 \), we may prove that \(J_{k+1} \cap T_k \sim S_k \neq \emptyset \), and select point \(x_{k+1} \in J_{k+1} \cap T_k \sim S_k \). Clearly \(x_{k+1} \in \text{conv}(x_i \cup D) \) for \(1 < i < k \). Show that \(x_i \notin \text{conv}(x_{k+1} \cup D) \) for \(1 < i < k \), to conclude that \(x_i \notin \text{conv}(x_j \cup D) \) for \(i \neq j, 1 < i, j < k + 1 \).

Define \(S_{k+1} = \bigcup_{1 < i < k+1} \{ \text{conv}(x_i \cup D) \} \). Choose real number \(f_{k+1} \) so that \(0 < f_{k+1} < \frac{1}{2} \min \{ \text{dist}(x_i, \text{conv}(x_j \cup D)) : i \neq j, 1 < i, j < k + 1 \} \), and let \(T_{k+1} = \bigcup_{1 < i < k+1} \{ \text{conv}(x_i \cup N(D, f_{k+1})) \} \). Notice that by our choice of \(f_{k+1} \), \(x_i \notin \text{conv}(x_j \cup N(D, f_{k+1})) \) for \(i \neq j, 1 < i, j < k + 1 \). Observe that \(T_{k+1} \subseteq T_k \) and that \(\bigcup_{1 < i < k+1} S_i \subseteq \bigcap_{1 < i < k+1} T_i \). By induction, \(S_n \) is defined for every \(1 < n \), and we let \(S = \text{cl}(\bigcup_{1 < n} S_n) \). Using the facts that \(\{ f_n \} \) converges to zero and \(x_i \notin \text{conv}(x_j \cup N(D, f_n)) \) for \(1 < i < n, j \neq i \), one may show that each \(x_i \) selected above sees via some \(T_n \) (and hence via \(S \)) only points in the corresponding closed halfspace \(H_i \). Then it is not hard to prove that set \(S \) satisfies the theorem.

We close with an easy analogue of Theorem 3.

Theorem 5. Let \(D \) be any convex set in \(\mathbb{R}^d \) which contains a hyperplane. Then \(D \) is the kernel of some set \(S
eq D \) in \(\mathbb{R}^d \) if and only if there is a line \(L \) in \(\text{bdry} \ D \) with \(L \cap D = \emptyset \).
Corollary 1. Let D be a closed convex subset of \mathbb{R}^d which contains a hyperplane. Then D is not the kernel of any set $S \neq D$ in \mathbb{R}^d.

References

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019