Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A weakly infinite-dimensional compactum which is not countable-dimensional

Author: Roman Pol
Journal: Proc. Amer. Math. Soc. 82 (1981), 634-636
MSC: Primary 54F45
MathSciNet review: 614892
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A compact metric space is constructed which is neither a countable union of zero-dimensional sets nor has an essential map onto the Hilbert cube.

References [Enhancements On Off] (What's this?)

  • [A1] P. S. Aleksandrov, The present status of the theory of dimension, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 4(45), 43–68 (Russian). MR 0046639
  • [A2] P. S. Aleksandrov, Some results in the theory of topological spaces obtained within the last twenty-five years, Russian Math. Surveys 15 (1960), no. 2, 23–83. MR 0119181
  • [A-P] P. S. \cyr{A}leksandrov and B. A. \cyr{P}asynkov, Vvedenie v teoriyu razmernosti: Vvedenie v teoriyu topologicheskikh prostranstv i obshchuyu teoriyu razmernosti, Izdat. “Nauka”, Moscow, 1973 (Russian). MR 0365524
  • [B] N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale, Deuxième édition revue et augmentée. Actualités Scientifiques et Industrielles, No. 1045, Hermann, Paris, 1958 (French). MR 0173226
  • [E] R. Engelking, Transfinite dimension, Surveys in general topology, Academic Press, New York-London-Toronto, Ont., 1980, pp. 131–161. MR 564101
  • [F] V. V. Fedorčuk, Infinite-dimensional compact Hausdorff spaces, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978); English transl. in Math. USSR Izv. 13 (1979), 445-460.
  • [H] David W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167–173. MR 0243496
  • [H-W] W. Hurewicz and H. Wallman, Dimension theory, Van Nostrand, Princeton, N. J., 1948.
  • [Kn] Bronisław Knaster, Sur les coupures biconnexes des espaces euclidiens de dimension 𝑛>1 arbitraire, Rec. Math. [Mat. Sbornik] N.S. 19(61) (1946), 9–18 (Russian, with French summary). MR 0017520
  • [Ku1] K. Kuratowski, Sur le prolongement des fonctions continues et les transformations en polytopes, Fund. Math. 24 (1935), 258-268.
  • [Ku2] -, Topology. Vol. II, PWN, Warsaw, 1968.
  • [L] A. Lelek, Dimension inequalities for unions and mappings of separable metric spaces, Colloq. Math. 23 (1971), 69–91. MR 0322829
  • [Ma] S. Mazurkiewicz, Sur les problèmes $ \kappa $ et $ \lambda $ de Urysohn, Fund. Math. 10 (1927), 311-319.
  • [Mi] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. MR 0152985, 10.1090/S0002-9904-1963-10931-3
  • [N] Keiô Nagami, Dimension theory, With an appendix by Yukihiro Kodama. Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970. MR 0271918
  • [P1] Roman Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), no. 3, 169–188. MR 716218
  • [P2] -, A remark on $ A$-weakly infinite-dimensional spaces, General Topology Appl. (to appear).
  • [R-S-W] Leonard R. Rubin, R. M. Schori, and John J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102. MR 519716
  • [S] Yu. Smirnov, On dimensional properties of infinite-dimensional spaces, General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961) Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 334–336. MR 0150726

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45

Retrieve articles in all journals with MSC: 54F45

Additional Information

Article copyright: © Copyright 1981 American Mathematical Society