A COUNTEREXAMPLE TO THE UNIMODULAR CONJECTURE ON FINITELY GENERATED DIMENSION GROUPS

NORBERT RIEDEL

Abstract. We give a series of examples of simple finitely generated dimension groups which cannot be obtained as the inductive limit of a system

\[\mathbb{Z}^{A_1} \to \mathbb{Z}^{A_2} \to \cdots \to \mathbb{Z}^{A_n} \to \cdots, \]

where each \(A_n \) is a unimodular matrix whose entries are nonnegative integers.

1. In this note we are concerned with ordered groups \(G \) of the following form. \(G \) is equal to \(\mathbb{Z}^r \) as an abelian group only, for some \(r \in \mathbb{N} \), and there exists a set \(\{a(1), \ldots, a(r)\} \) of linearly independent vectors in \((\mathbb{R}^r)^+\) such that the positive cone \(G^+ \) of \(G \) is given by

\[G^+ = \left\{ z \in \mathbb{Z}^r / \langle a(i), z \rangle > 0; i = 1, \ldots, r \right\} \cup \{0\}. \]

\(G \) is a dimension group if it satisfies the Riesz interpolation property (for the definitions concerning dimension groups we refer to [1], [2]). Effros and Shen conjectured in [3] (see also [1]) that if \(G \) is a dimension group, then there exists a sequence \(A_1, A_2, \ldots \) in the set \(\text{GL}(r, \mathbb{Z})^+ \) of all unimodular matrices whose entries are nonnegative integers, such that

\[G^+ = \bigcup_{n=1}^{\infty} (A_n \cdots A_1)^{-1}(\mathbb{Z}^r)^+. \]

In [4] we have shown that the conjecture is true if \(G \) is simple (i.e. \(G^+ \) has no nontrivial faces) and \(p = 1 \) holds. Using the theory of diophantine approximation we will show in the sequel that for \(p = r - 1 \) (\(r > 3 \)) there exist simple dimension groups for which the conjecture of Effros and Shen is false. If \(p = r - 1 \) holds then we can use the following criterion in order to decide whether \(G \) is a simple dimension group or not. Let \(b \) be a nonzero vector which is orthogonal to the hyperplane in \(\mathbb{R}^r \) which is generated by the vectors \(a(1), \ldots, a(r-1) \).

1.1. Proposition [2, Corollary 4.2]. The following statements are equivalent.

1.1.1 \(G \) is a simple dimension group.

1.1.2 \(\det(a(1), \ldots, a(r-1), z) \neq 0 \) holds for any nonzero vector \(z \) in \(\mathbb{Z}^r \).

1.1.3 The components of the vector \(b \) are linearly independent over the rational field \(\mathbb{Q} \).

Received by the editors October 23, 1980 and, in revised form, January 5, 1981.

1980 Mathematics Subject Classification. Primary 06F20, 10F10, 46L99.

© 1981 American Mathematical Society

0002-9939/81/0000-0402/002.25

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
2. Henceforth we fix $r > 3$. Let $a^{(1)}, \ldots, a^{(r-1)}$ be fixed linearly independent vectors in $(\mathbb{R}^r)^\ast$ such that the ordered group G defined above is a simple dimension group. Denote by b the unique vector in \mathbb{R}^r such that

$$<b, x> = \det(a^{(1)}, \ldots, a^{(r-1)}, x).$$

By multiplying one of the vectors $a^{(1)}, \ldots, a^{(r-1)}$ with a suitable constant we may assume that the last component b_r of b is equal to 1. Of course, this does not impair the definition of G.

We need some other notations. For any subset $M \subseteq \mathbb{R}^r$ we denote by $\text{conv}(M)$ the convex hull of M. For any vector $x = (x_1, \ldots, x_r)' \in \mathbb{R}^r \setminus \{0\}$ we set $\bar{x} = ||x||^{-1} x$, where $||x||$ is the l^1-norm of x, and we set $\bar{x} = (x_1, \ldots, x_{r-1})'$.

Now we assume that A_1, A_2, \ldots is a sequence in $\text{GL}(r, \mathbb{Z})^\ast$ such that

$$G^+ = \bigcup_{n=1}^{\infty} (A_n \ldots A_1)^{-1}(\mathbb{Z}^r)^\ast,$$

or equivalently,

$$\text{conv}\{\bar{a}^{(1)}, \ldots, \bar{a}^{(r-1)}\} = \bigcap_{n=1}^{\infty} \{\bar{x} \in \text{conv}(A_n' \ldots A_1')(\mathbb{Z}^r)^\ast \setminus \{0\}\}. \quad (2.1)$$

2.1. Definition [5, II, §4]. To each vector $x \in \mathbb{R}^{r-1}$ we associate a linear form L_x on \mathbb{Z}^{r-1} by $L_x(z) = <x, z>$, $z \in \mathbb{Z}^{r-1}$. L_x is called badly approximate if there exists a positive constant α such that $|L_x(z) - q| > \alpha||z||_\infty^{-r+1}$ holds for each $z \in \mathbb{Z}^{r-1} \setminus \{0\}$, $q \in \mathbb{Z}$, where $||z||_\infty$ denotes the maximum norm of z.

Our main purpose in this section is to show that in our present situation the linear form L_x, as defined above, cannot be badly approximable.

We need the following lemma whose easy proof is left to the reader.

2.2. Lemma. Let A_1, A_2, \ldots be a monotonely decreasing sequence of $r-1$ dimensional simplices in \mathbb{R}^r and let $A = \bigcap_{n=1}^{\infty} A_n$. Moreover let $v^{(1,0)}, \ldots, v^{(r,0)}$ be the extreme points of A_n. Then there exists a monotonely increasing sequence n_1, n_2, \ldots of positive integers such that $(v^{(j, n)})_{i \in \mathbb{N}}$ converges to a point in A for each j, $1 \leq j \leq r$, and for any extreme point w in A there exists a j, $1 \leq j \leq r$, such that $w = \lim_{i \rightarrow \infty} v^{(j, n)}$.

It follows from (2.1) together with 2.2 that there exists a monotonely increasing sequence n_1, n_2, \ldots of positive integers, a permutation σ of the set of integers $\{1, \ldots, r\}$, and a point w in $\text{conv}(\{\bar{a}^{(1)}, \ldots, \bar{a}^{(r-1)}\})$ such that, if $v^{(6(1),0)}, \ldots, v^{(6(r),0)}$ are the column vectors of the matrix $B^{(i)} = A^{(i)}_1 \ldots A^{(i)}_n$, then we have

$$\lim_{i \rightarrow \infty} v^{(j, 0)} = \bar{a}^{(i)} \quad \text{for } 1 < j < r - 1; \quad \lim_{i \rightarrow \infty} v^{(r, 0)} = w.$$

Now we can prove the following proposition which is crucial for the proof of Theorem 2.4.

2.3. Proposition. There exists a $k \in \{1, \ldots, r-1\}$ such that

$$\lim_{n \rightarrow \infty} \det(v^{(1,n)}, \ldots, v^{(r,n)})^{-1} \det(\bar{a}^{(1)}, \ldots, \bar{a}^{(r-1)}, \bar{v}^{(k,n)}) = 0.$$
Proof. There exists a \(k \in \{1, \ldots, r - 1\} \) such that \(\tilde{a}^{(k)} \neq w \). Since \(\text{conv}(\{ \tilde{a}^{(1)}, \ldots, \tilde{a}^{(r-1)} \}) \) is a simplex containing \(w \), we have
\[
\tilde{a}^{(k)} \notin M = \text{conv}(\{ \tilde{a}^{(j)} / j \neq k \} \cup \{ w \}).
\]

It follows that
\[
\delta = \inf \{ \| \tilde{a}^{(k)} - x \| / x \in M \} > 0.
\]
Since \(\tilde{a}^{(k)} \) is contained in \(\text{conv}(\{ \tilde{v}^{(1,n)}, \ldots, \tilde{v}^{(r,n)} \}) \) for each \(n \in \mathbb{N} \), we can write
\[
\tilde{a}^{(k)} = \sum_{j=1}^{r} f_j^{(n)} \tilde{v}^{(j,n)},
\]
with \(f_j^{(n)} \in [0, 1] \) and \(\sum_{j=1}^{r} f_j^{(n)} = 1 \). By our assumption \(G \) is a simple dimension group. Therefore we obtain from (1.1.2) that \(\det(\tilde{a}^{(1)}, \ldots, \tilde{a}^{(r-1)}, \tilde{v}^{(k,n)}) \neq 0 \). In particular \(\tilde{v}^{(k,n)} \neq \tilde{a}^{(k)} \) and \(f_k^{(n)} \neq 1 \). Thus we can define
\[
\lambda_j^{(n)} = f_j^{(n)} (1 - f_k^{(n)})^{-1}, \quad u^{(n)} = \sum_{j \neq k} \lambda_j^{(n)} \tilde{v}^{(j,n)}.
\]
Since \(\{ \tilde{v}^{(j,n)} \}_{n \in \mathbb{N}} \) converges to \(\tilde{a}^{(j)} \) for \(1 < j < r - 1 \), and to \(w \) for \(j = r \), there exists a \(n_0 \in \mathbb{N} \) such that for any \(n > n_0 \)
\[
\| \tilde{v}^{(j,n)} - \tilde{a}^{(j)} \| < \delta/2 \quad \text{for } j \neq r; \quad \| \tilde{v}^{(r,n)} - w \| < \delta/2.
\]

If we set
\[
\tilde{u}^{(n)} = \sum_{j \neq k, r} \lambda_j^{(n)} \tilde{a}^{(j)} + \lambda_r^{(n)} w
\]
then we obtain for each \(n > n_0 \)
\[
\| u^{(n)} - \tilde{a}^{(k)} \| < \delta/2.
\]
Since \(\tilde{u}^{(n)} \) is contained in \(M \) we have
\[
\| \tilde{u}^{(n)} - \tilde{a}^{(k)} \| > \delta.
\]
By combining the last two inequalities we obtain an estimation for the distance of \(u^{(n)} \) and \(\tilde{a}^{(k)} \):
\[
\| u^{(n)} - \tilde{a}^{(k)} \| > \delta/2 \quad \text{for } n > n_0.
\]
Since \(\tilde{a}^{(1)}, \ldots, \tilde{a}^{(r-1)}, u^{(n)} \) are contained in \(\text{conv}(\{ \tilde{v}^{(1,n)}, \ldots, \tilde{v}^{(r,n)} \}) \) we have
\[
|\det(\tilde{a}^{(1)}, \ldots, \tilde{a}^{(r-1)}, u^{(n)})| < |\det(\tilde{v}^{(1,n)}, \ldots, \tilde{v}^{(r,n)})|.
\]

Therefore we obtain for each \(n > n_0 \)
\[
\frac{|\det(\tilde{a}^{(1)}, \ldots, \tilde{a}^{(r-1)}, \tilde{v}^{(k,n)})|}{|\det(\tilde{v}^{(1,n)}, \ldots, \tilde{v}^{(r,n)})|} \leq \frac{|\det(\tilde{a}^{(1)}, \ldots, \tilde{a}^{(r-1)}, f_k^{(n)-1}(\tilde{a}^{(k)} - u^{(n)}) + u^{(n)})|}{|\det(\tilde{a}^{(1)}, \ldots, \tilde{a}^{(r-1)}, u^{(n)})|} = |1 - f_k^{(n)}|^{-1}.
\]

Since \(\| u^{(n)} - \tilde{a}^{(k)} \| > \delta/2 \) holds for each \(n > n_0 \) and since
\[
\| \tilde{a}^{(k)} - \tilde{v}^{(k,n)} \| = |1 - f_k^{(n)}| \quad \| u^{(n)} - \tilde{a}^{(k)} \|
\]
converges to zero for $n \to \infty$ it follows that $|1 - r_k^{(n)}|^{-1}$ converges to zero. Hence

$$
\lim_{n \to \infty} \det(\tilde{v}(1,n), \ldots, \tilde{v}(r,n))^{-1} \det(\tilde{a}(1), \ldots, \tilde{a}(r-1), \tilde{v}(k,n)) = 0.
$$

2.4. **Theorem.** In the situation considered above the linear form L_k is not badly approximable.

Proof. Suppose that our assertion is not true. Then there exists a positive constant α such that

$$
|\langle b, z \rangle| > \alpha \|z\|^{-r+1}
$$

for each $z \in \mathbb{Z} \setminus \{0\}$. (2.4.1)

First we show the following.

(2.4.2) There exists a positive constant β such that

$$
\|v^{(i,n)}\| \|v^{(j,n)}\|^{-1} < \beta \quad \text{for each } n \in \mathbb{N}; \quad i, j \in \{1, \ldots, r\}.
$$

Suppose that this is not true. Let $k_n = \min\{|v^{(j,n)}|/1 < j < r\}$ and $l_n = \|v^{(1,n)}\| \|v^{(2,n)}\| \cdots \|v^{(r,n)}\|$. Then there exists a monotonically increasing sequence n_1, n_2, \ldots of positive integers such that $\lim_{n \to \infty} k_n^{r-1} = 0$. We can find an $m \in \{1, \ldots, r\}$ such that $\|v^{(m,n)}\| = k_n$ for infinitely many $n \in \mathbb{N}$. Thus we may choose the sequence n_1, n_2, \ldots in such a manner that in addition $\|v^{(m,n)}\| = k_n$ holds for each $n \in \mathbb{N}$. We set $d = \|a^{(1)}\| \cdots \|a^{(r-1)}\|$. Now we obtain from the inequality

$$
|\det(\tilde{a}(1), \ldots, \tilde{a}(r-1), v^{(m,n)})| \leq |\det(\tilde{v}(1,n), \ldots, \tilde{v}(r,n))|,
$$

which is true for any $n \in \mathbb{N},$

$$
k_n^{r-1}|\det(\tilde{a}(1), \ldots, \tilde{a}(r-1), v^{(m,n)})| = k_n^{r-1}d^{-1}|\det(\tilde{a}(1), \ldots, \tilde{a}(r-1), v^{(m,n)})|

< k_n^{r-1}d^{-1}|\det(\tilde{v}(1,n), \ldots, \tilde{v}(r,n))|,

= k_n^{r-1}d^{-1}|\det(\tilde{v}(1,n), \ldots, \tilde{v}(r,n))| = k_n^{r-1}d^{-1}.
$$

From this we infer that

$$
\lim_{i \to \infty} \|v^{(m,n)}\|^{r-1}|\det(\tilde{a}(1), \ldots, \tilde{a}(r-1), v^{(m,n)})| = 0.
$$

Since $\|v^{(m,n)}\| \to \infty < \|v^{(m,n)}\|$ holds for each $i \in \mathbb{N}$, this implies

$$
\lim_{i \to \infty} \|v^{(m,n)}\|^{r-1}|\langle b, v^{(m,n)} \rangle| = 0.
$$

However, this contradicts (2.4.1).

Using 2.3 as well as (2.4.2) we can now easily complete the proof of our theorem. Let $k \in \{1, \ldots, r-1\}$ be chosen as in 2.3. By (2.4.2) there exists a positive constant β such that

$$
\|v^{(k,n)}\| < \beta \|v^{(1,n)}\| \cdots \|v^{(r,n)}\| \quad \text{for any } n \in \mathbb{N}.
$$

Since $|\det(B_n)| = 1$ holds for each $n \in \mathbb{N},$ we obtain now

$$
\beta |\det(\tilde{a}(1), \ldots, \tilde{a}(r-1), v^{(k,n)})| |\det(\tilde{v}(1,n), \ldots, \tilde{v}(r,n))|^{-1}

> \|v^{(k,n)}\|^{r-1}|\det(\tilde{a}(1), \ldots, \tilde{a}(r-1), v^{(k,n)})|

= \|v^{(k,n)}\|^{r-1}|\det(\tilde{a}(1), \ldots, \tilde{a}(r-1), v^{(k,n)})|.
$$
Therefore, by 2.3,
\[
\lim_{n \to \infty} \|\tilde{v}^{(k,n)}\|_{\infty} (r-1) \langle b, v^{(k,n)} \rangle = 0,
\]
and this contradicts (2.4.1).

3. By using the results of §2 we are now able to construct a lot of counterexamples to the unimodular conjecture. Let \(x \) be a vector in \(\mathbb{R}^{r-1} \) such that \(L_x \) is badly approximable. By [5, II, §4, Theorem 4A] we may choose \(x \) in such a manner that the components \(x_1, \ldots, x_{r-1} \) of \(x \) lie in an algebraic number field \(K \) of degree \(r \) and \(\{1, x_1, \ldots, x_{r-1}\} \) is a basis of \(K \). We also demand that the components of \(x \) do not all have a positive sign. (If necessary, change the basis in \(\mathbb{Z}^{r-1} \).) We set \(b = (x_1, \ldots, x_{r-1})' \), and we choose \(r - 1 \) linearly independent positive vectors in the hyperplane which is orthogonal to \(b \). (Since the components of \(x \) do not all have a positive sign this can always be done.) Now we define a simple dimension group \(G \) as in §1. In order to show that \(G \) cannot be obtained as the inductive limit of a unimodular system of groups it is necessary to state that the property that \(b \) gives rise to a badly approximable linear form \(L_b \) is left invariant under isomorphisms of the group \(G \). To speak more precisely, if \(G' \) is an isomorphic copy of \(G \) and we associate a vector \(b' \) with \(G' \) in the same manner as the vector \(b \) with \(G \), then we have \(\gamma b' = Ab \) for some \(A \in \text{GL}(r, \mathbb{Z}) \) and a nonzero constant \(\gamma \). Now some simple calculations show that \(L_{b'} \) is also badly approximable. Thus, by an application of 2.4, we can conclude that \(G \) is not isomorphic to the inductive limit of a system \(\mathbb{Z}^r \rightarrow \mathbb{Z}^r \rightarrow \cdots \mathbb{Z}^r \rightarrow \cdots \) with \(A_n \in \text{GL}(r, \mathbb{Z})^+ \) for each \(n \in \mathbb{N} \).

It follows from a theorem of Khintchine (see [5, III, §3, Theorem 3A]) together with a transference principle for badly approximable linear forms (see [5, IV, §5, Theorem 5B]) that the set of all vectors \(x \in \mathbb{R}^{r-1} \) such that \(L_x \) is badly approximable has Lebesgue measure zero. Thus there is still some hope that the conjecture of Effros and Shen is valid for a rather big class of finitely generated dimension groups.

REFERENCES

Institut für Mathematik, Technische Universität, D-8000 München, Federal Republic of Germany

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use