Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals


Author: Winfried Bruns
Journal: Proc. Amer. Math. Soc. 83 (1981), 19-24
MSC: Primary 13C05; Secondary 13C15
DOI: https://doi.org/10.1090/S0002-9939-1981-0619972-3
MathSciNet review: 619972
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In [2] Eisenbud and Evans gave an important generalization of Krull's Principal Ideal Theorem. However, their proof, using maximal Cohen-Macaulay modules, may have limited the validity of their theorem to a proper subclass of all local rings. (Hochster proved the existence of maximal Cohen-Macaulay modules for local rings which contain a field, cf. [4]). In the first section we present a proof which is simpler and guarantees the Generalized Principal Ideal Theorem for all local rings. The main result of the second section was conjectured in [2]. Under a hypothesis typically being satisfied for the most important fitting invariant of a module, it improves the Eagon-Northcott bound [1] on the height of a determinantai ideal considerably. Finally we will discuss the implications of a recent theorem of Fairings [3] on determinantal ideals.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188-204. MR 0142592 (26:161)
  • [2] D. Eisenbud and E. G. Evans, Jr., A generalized principal ideal theorem, Nagoya Math. J. 62 (1976), 41-53. MR 0409440 (53:13195)
  • [3] G. Faltings, Ein Kriterium für vollständige Durchschnitte, Invent. Math. 62 (1981), 383-402. MR 604835 (82f:14050)
  • [4] M. Hochster, Deep local rings, preprint, Aarhus, 1973.
  • [5] -, Principal ideal theorems, Ring Theory (Waterloo, 1978), Lecture Notes in Math., vol. 734, Springer-Verlag, Berlin and New York, 1979. MR 548129 (80k:13003)
  • [6] I. Kaplansky, Commutative rings, rev. ed., The University of Chicago Press, Chicago and London, 1974. MR 0345945 (49:10674)
  • [7] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [8] G Scheja and U. Storch, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann. 197 (1972), 137-170. MR 0306172 (46:5299)
  • [9] U. Vetter, Zu einem Satz von G. Trautmann über den Rang gewisser kohärenter analytischer Moduln, Arch. Math. (Basel) 24 (1973), 158-161. MR 0344518 (49:9257)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C05, 13C15

Retrieve articles in all journals with MSC: 13C05, 13C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0619972-3
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society