Integral representation of multiplicative, involution preserving operators in

Author:
Stephen T. L. Choy

Journal:
Proc. Amer. Math. Soc. **83** (1981), 54-58

MSC:
Primary 46J99; Secondary 46H99, 47B38

DOI:
https://doi.org/10.1090/S0002-9939-1981-0619980-2

MathSciNet review:
619980

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Bounded linear operators from the space of continuous vector-valued functions which preserve multiplication and involution are characterized in terms of their representing measures. A key role is played by the Arens product in the second dual of a Banach algebra.

**[1]**R. G. Bartle,*A general bilinear integral*, Studia Math.**15**(1956), 337-352. MR**0080721 (18:289a)****[2]**R. Bartle, N. Dunford and J. Schwartz,*Weak compactness and vector measures*, Canad. J. Math.**7**(1955), 289-305. MR**0070050 (16:1123c)****[3]**F. F. Bonsall and J. Duncan,*Numerical ranges of operators on normed spaces and of elements of normed algebras*, London Math. Soc. Lecture Note Series, vol. 2, Cambridge Univ. Press, London and New York, 1971. MR**0288583 (44:5779)****[4]**J. K. Brooks and P. W. Lewis,*Linear operators and vector measures*, Trans. Amer. Math. Soc.**192**(1974), 139-162. MR**0338821 (49:3585)****[5]**S. T. L. Choy,*Riesz representation theorem and weak compactness*, Anal. Math.**6**(1980), 199-205. MR**592095 (82b:47034)****[6]**N. Dinculeanu,*Vector measures*, Internat. Series of Monographs in Pure and Appl. Math., vol. 95, Pergamon Press, New York; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967. MR**0206190 (34:6011b)****[7]**J. Gil de Lamadrid,*Measure and tensors*, Trans. Amer. Math. Soc.**114**(1965), 98-121. MR**0179604 (31:3851)****[8]**R. K. Goodrich,*A Riesz representation theorem*, Proc. Amer. Math. Soc.**24**(1970), 629-636. MR**0415386 (54:3474)****[9]**G. W. Johnson,*Integral representations of certain linear operators*, Thesis, University of Minnesota, 1968.**[10]**-,*Integral representation of multiplicative, involution preserving operators in*, Proc. Amer. Math. Soc.**23**(1969), 373-377. MR**0253052 (40:6267)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46J99,
46H99,
47B38

Retrieve articles in all journals with MSC: 46J99, 46H99, 47B38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1981-0619980-2

Keywords:
Vector-valued measure,
multiplicative,
involution preserving operators,
representing measure,
Arens product

Article copyright:
© Copyright 1981
American Mathematical Society