Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A generalized Bessel inequality

Author: Elena Prestini
Journal: Proc. Amer. Math. Soc. 83 (1981), 99-102
MSC: Primary 42A20; Secondary 42A24
MathSciNet review: 619991
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: To any pair of diadic intervals $ [I,\omega ]$ with / Q $ I \subseteq [0,1]$ and $ \omega = [{N_\omega },{N_\omega } + \vert I{\vert^{ - 1}})$ we associate the function $ {u_{[I,\omega ]}}(x) = \vert I{\vert^{ - 1/2}}{e^{i{N_w}x}}{\chi _I}(x)$. In this paper we will give a condition under which a collection $ B$ of such pairs satisfies the inequality $ B$ for any $ ab$ in $ f$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A20, 42A24

Retrieve articles in all journals with MSC: 42A20, 42A24

Additional Information

PII: S 0002-9939(1981)0619991-7
Article copyright: © Copyright 1981 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia