Extension of Bernšteĭn's theorem
Author:
S. H. Tung
Journal:
Proc. Amer. Math. Soc. 83 (1981), 103-106
MSC:
Primary 32A15; Secondary 30E10, 32A30
DOI:
https://doi.org/10.1090/S0002-9939-1981-0619992-9
MathSciNet review:
619992
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A well-known theorem of Bernstein states that if a polynomial of degree of a complex variable has its modulus no larger than one on the unit disk then the modulus of its derivative will not exceed
on the unit disk. Here we extend the theorem to polynomials on the unit ball in several complex variables.
- [1] L. V. Ahlfors, Complex analysis, 2nd ed., McGraw-Hill, New York, 1966. MR 510197 (80c:30001)
- [2] E. Hille, Analytic function theory, Vol. II, Ginn, Boston, Mass., 1962. MR 0201608 (34:1490)
- [3] L. Hörmander, On a theorem of Grace, Math. Scand. 2 (1954), 55-64. MR 0062844 (16:27b)
- [4] O. D. Kellogg, On bounded polynomials in several variables, Math. Z. 27 (1928), 55-64. MR 1544896
- [5] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc. (2) 1 (1969), 57-60. MR 0249583 (40:2827)
- [6] M. Marden, Geometry of polynomials, Math. Surveys, no. 3, Amer. Math. Soc., Providence, R. I., 1966. MR 0225972 (37:1562)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A15, 30E10, 32A30
Retrieve articles in all journals with MSC: 32A15, 30E10, 32A30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1981-0619992-9
Keywords:
Bernstein's theorem,
polynomial,
the unit ball in several complex variables
Article copyright:
© Copyright 1981
American Mathematical Society