Derivatives of polynomials with positive coefficients
Author:
A. K. Varma
Journal:
Proc. Amer. Math. Soc. 83 (1981), 107112
MSC:
Primary 26C05; Secondary 26D05, 41A17
MathSciNet review:
619993
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be an algebraic polynomial of degree with positive coefficients. We set In this work upper bounds of are investigated. We restrict ourselves here with the case . Reslts are shown to be best possible.
 [1]
P.
Erdös, On extremal properties of the derivatives of
polynomials, Ann. of Math. (2) 41 (1940),
310–313. MR 0001945
(1,323g)
 [2]
Einar
Hille, G.
Szegö, and J.
D. Tamarkin, On some generalizations of a theorem of A.
Markoff, Duke Math. J. 3 (1937), no. 4,
729–739. MR
1546027, http://dx.doi.org/10.1215/S0012709437003612
 [3]
G.
G. Lorentz, The degree of approximation by polynomials with
positive coefficients, Math. Ann. 151 (1963),
239–251. MR 0155135
(27 #5075)
 [4]
G.
G. Lorentz, Derivatives of polynomials with positive
coefficients, J. Approximation Theory 1 (1968),
1–4. MR
0231957 (38 #283)
 [5]
A. A. Markov, On a problem of D. I. Mendeleev, Izv. Akad. Nauk 62 (1889), 124.
 [6]
John
T. Scheick, Inequalities for derivatives of polynomials of special
type, J. Approximation Theory 6 (1972),
354–358. Collection of articles dedicated to J. L. Walsh on his 75th
birthday, VIII. MR 0342909
(49 #7653)
 [7]
Gábor
Szegö, On some problems of approximations, Magyar Tud.
Akad. Mat. Kutató Int. Közl. 9 (1964),
3–9 (English, with Russian summary). MR 0173895
(30 #4102)
 [8]
P.
Turán, Remark on a theorem of Erhard Schmidt,
Mathematica (Cluj) 2 (25) (1960), 373–378. MR 0132963
(24 #A2799)
 [9]
A.
K. Varma, Some inequalities of algebraic
polynomials having real zeros, Proc. Amer.
Math. Soc. 75 (1979), no. 2, 243–250. MR 532144
(80k:28019), http://dx.doi.org/10.1090/S00029939197905321447
 [10]
A. Zygmund, A remark on the conjugate series, Proc. London Math. Soc. 36 (1932), 392400.
 [1]
 P. Erdos, Extremal properties of derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310313. MR 0001945 (1:323g)
 [2]
 E. Hille, G. Szego and J. D. Tamerkin, On some generalizations of a theorem of A. A. Markhoff, Duke Math. J. 3 (1937), 729739. MR 1546027
 [3]
 G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239251. MR 0155135 (27:5075)
 [4]
 , Derivatives of polynomials with positive coefficients, J. Approx. Theory 1 (1968), 14. MR 0231957 (38:283)
 [5]
 A. A. Markov, On a problem of D. I. Mendeleev, Izv. Akad. Nauk 62 (1889), 124.
 [6]
 J. T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approx. Theory 6 (1972), 354358. MR 0342909 (49:7653)
 [7]
 G. Szego, On some problems of approximations, Magyar Tud. Akad. Mat. Kutato Int. Dozl. 2 (1964), 39. MR 0173895 (30:4102)
 [8]
 P. Turan, Remarks on a theorem of Erhard Schmidt, Mathematica 2 (25) (1960), 373378. MR 0132963 (24:A2799)
 [9]
 A. K. Varma, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc. 75 (1979), 243250. MR 532144 (80k:28019)
 [10]
 A. Zygmund, A remark on the conjugate series, Proc. London Math. Soc. 36 (1932), 392400.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
26C05,
26D05,
41A17
Retrieve articles in all journals
with MSC:
26C05,
26D05,
41A17
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198106199930
PII:
S 00029939(1981)06199930
Article copyright:
© Copyright 1981
American Mathematical Society
