Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebras


Authors: Vlastimil Dlab and Claus Michael Ringel
Journal: Proc. Amer. Math. Soc. 83 (1981), 228-232
MSC: Primary 15A18; Secondary 15A48, 16A46, 16A64
MathSciNet review: 624903
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The spectral radius of a Coxeter transformation is shown to be an eigenvalue which can be expressed in terms of lengths of certain positive roots of the corresponding valued graph. This result is used to determine the Gelfand-Kirillov dimension of the preprojective algebras: This dimension is equal to 0, 1 or $ \infty $ according to whether the underlying graph is Dynkin, Euclidean or otherwise.


References [Enhancements On Off] (What's this?)

  • [1] Norbert A’Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976), no. 1, 61–67 (French). MR 0424967
  • [2] Walter Borho and Hanspeter Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220 (1976), no. 1, 1–24. MR 0412240
  • [3] Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 0447344
  • [4] Vlastimil Dlab and Claus Michael Ringel, The preprojective algebra of a modulated graph, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin-New York, 1980, pp. 216–231. MR 607155
  • [5] I. M. Gelfand and A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 5–19 (French). MR 0207918
  • [6] C. M. Ringel, Algebras of wild representation type, Abstracts Conf. on Representations of Finite Dimensional Algebras, Oberwolfach 1977, pp. 95-102.
  • [7] V. F. Subbotin and R. B. Stekol′ščik, The Jordan form of the Coxeter transformation, and applications to representations of finite graphs, Funkcional. Anal. i Priložen. 12 (1978), no. 1, 84–85 (Russian). MR 0498732
  • [8] James S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J. Appl. Math. 16 (1968), 1208–1222. MR 0244284
  • [9] V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A18, 15A48, 16A46, 16A64

Retrieve articles in all journals with MSC: 15A18, 15A48, 16A46, 16A64


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1981-0624903-6
Keywords: Cartan matrix, valued graph, Dynkin diagram, Euclidean diagram, positive root, Coxeter transformation, eigenvalue, spectral radius, Gelfand-Kirillov dimension, preprojective algebra, finite, tame and wild representation types
Article copyright: © Copyright 1981 American Mathematical Society