HYPERCODES, RIGHT CONVEX LANGUAGES
AND THEIR SYNTACTIC MONOIDS

G. THIERRIN

Abstract. If X^* is the free monoid generated by the alphabet X, then any subset L of X^* is called a language over X. If P_L is the principal congruence determined by L, then the quotient monoid $\text{syn}(L) = X^*/P_L$ is called the syntactic monoid of L. A hypercode over X is any set of nonempty words that are noncomparable with respect to the embedding order of X^*. If H is a hypercode, then the language $H = \{x|x \in X^* \text{ and } a < x \text{ for some } a \in H\}$ is a right convex ideal of X^*. The syntactic monoid $\text{syn}(H)$ can be characterized as a monoid with a disjunctive μ-zero. The two particular interesting cases when $\text{syn}(H)$ is a nil monoid and when $\text{syn}(H)$ is a semilattice are also characterized.

1. Introduction and preliminary results. Let X be an alphabet, finite or infinite, let X^* be the free monoid generated by X and let $X^+ = X^* - \{1\}$, 1 being the empty word. The length of a word, $x \in X^*$, is denoted by $\lg(x)$ and every subset of X^* is called a language over X.

If M is a monoid and A is a subset of M, then the relation P_A, defined by $a \equiv b(P_A)$ iff $A .. a = A .. b$ where $A .. a = \{(x,y) | x,y \in M, xay \in A\}$ is a congruence of M, called the principal congruence determined by A. If P_A is the identity, then A is called disjunctive.

If A is a language over X, then P_A is called the syntactic congruence of A and the quotient monoid $\text{syn}(A) = X^*/P_A$ is called the syntactic monoid of A.

The relation \leq defined on X^* by $x \leq y$ iff $x = x_1x_2\cdots x_n$ and $y = y_1y_2y_3\cdots y_nx_{n+1}$ for some n where $x_i,y_i \in X^*$ is a partial order on X^*, called the embedding order. For every language $A \subseteq X^*$, let $\bar{A} = \{x|a < x \text{ for some } a \in A\}$ and $\bar{A} = \{x|x < a \text{ for some } a \in A\}$. It is well known that if X is finite, then each set of pairwise incomparable elements of X^* is always finite ([1], [2], [3]), and that the languages \bar{A} and \bar{A} are regular, that is, their syntactic monoids are finite.

A nonempty language, $C \subseteq X^+$, is called a code if $a_1a_2\cdots a_n = b_1b_2\cdots b_m$ and $a_i,b_j \in C$ implies $n = m$ and $a_i = b_i$ for every i. A nonempty language $H \subseteq X^+$ is called a hypercode if every pair of distinct elements of H are incomparable relative to the embedding order. It is immediate that every hypercode is a code.
A language $A \subseteq X^*$ is said to be right convex if $a < x, a \in A$ implies $x \in A$. A language A, $1 \not\in A$, is right convex iff $A = \tilde{H}$ for some hypercode H. This hypercode H is the set of the minimal words of A. Right convex languages and hypercodes have been first considered when the alphabet X is finite ([7], [8]). In this case, the hypercodes are always finite and the right convex languages are regular.

An ideal I of a monoid M is called a μ-ideal if $ab \in I$ implies $axb \in I$ for all $x \in M$ [10] and a zero element of M is called a μ-zero if it is a μ-ideal. A language A over X is right convex iff A is a μ-ideal.

If H is a hypercode over X, then $\text{syn}(\tilde{H})$ is a monoid with a disjunctive μ-zero. Conversely, if M is a monoid with a disjunctive μ-zero, then there exists a hypercode over an alphabet X such that M is isomorphic to $\text{syn}(\tilde{H})$.

Some properties of a language can be determined by considering their syntactic monoid. For example, a language A over a finite alphabet is regular iff $\text{syn}(A)$ is finite. If the language C is a code, then it is in general more interesting to consider the syntactic monoid $\text{syn}(C^*)$ of C^* instead of C. However, this is not the case for the hypercodes. A characterization of the syntactic monoid $\text{syn}(H)$ of a hypercode H over a finite alphabet has been given in [9]. In this paper, we consider the syntactic monoid of languages of the form \tilde{H} where H is a hypercode. In particular, we characterize the hypercodes H in the two following cases:

(a) $\text{syn}(\tilde{H})$ is a nil monoid and the alphabet X is finite;
(b) $\text{syn}(\tilde{H})$ is a semilattice.

2. Quasi-maximal hypercodes over a finite alphabet. In this section, the alphabet X is always assumed to be finite. A hypercode H over X is said to be maximal if for every $u \in X^*$, $u \not\in H$, $H \cup u$ is not a hypercode. Every hypercode can be embedded in a maximal one. A hypercode is maximal iff $X^* = \tilde{H} \cup H$ [7]. A hypercode is said to be quasi-maximal if $X^* - \{\tilde{H} \cup H\}$ is finite. Since the alphabet X is finite, and since a hypercode over X is always finite, then \tilde{H} is also finite; therefore, H is a quasi-maximal hypercode iff $X^* - \tilde{H}$ is finite. Clearly, every maximal hypercode is quasi-maximal, but the converse is not true. For example, if $X = \{a, b\}$, then $H = \{a^2, b^2\}$ is a hypercode that is quasi-maximal but not maximal.

Let us remark that a hypercode H over a finite alphabet X is quasi-maximal iff there exists an integer $m > 1$ such that $H \cup u$ is not a hypercode for $\lg(u) > m$.

Recall that a nil monoid is a monoid with zero such that every element different from the identity is nilpotent.

If A is a language over X we will denote by $\alpha(A)$ the alphabet of A, that is, $\alpha(A) = \{a|a \in X$ and $ras \in A$ for some $r, s \in X^*\}$.

PROPOSITION 1. Let H be a hypercode over a finite alphabet X such that $\alpha(H) = X$. Then H is quasi-maximal $\iff \text{syn}(\tilde{H})$ is a finite nil monoid.

PROOF. (\Rightarrow) Let $u \in X^*$, $u \neq 1$, and suppose that $u^m \not\in \tilde{H}$ for $m > 1$. Since H is quasi-maximal, there exists $k > 1$ such that $H \cup u^m$ is not a hypercode for $n > k$. Hence $u^n \in H$ for $n > k$. Since H is finite, we have a contradiction. Therefore,
\(u^m \in \tilde{H} \) for some \(m > 1 \) and \(\text{syn}(\tilde{H}) \) is a nil monoid because the class \(\tilde{H} \) modulo \(P_{\tilde{H}} \) is the zero element of \(\text{syn}(\tilde{H}) \). Since \(H \) is finite, then \(\tilde{H} \) is regular and \(\text{syn}(\tilde{H}) \) is finite.

(\(\leq \)) Let \(a \in X \). Since \(a(H) = X \), there exist \(r, s \in X^* \) such that \(h_1 = ras \in H \). If \(a \equiv 1(P_{\tilde{H}}) \), then \(h_1 = ras \equiv rs(P_{\tilde{H}}) \). Since \(\tilde{H} \) is a class modulo \(P_{\tilde{H}} \), then \(rs \in \tilde{H} \) and \(h_2 < rs \) for some \(h_2 \in H \). Therefore, \(h_2 < rs < h_1 \) and \(h_2 = rs = h_1 \), a contradiction. Hence \(a \neq 1(P_{\tilde{H}}) \).

Since \(\text{syn}(\tilde{H}) \) is a finite nil monoid, then for every \(a \in X \), there exists \(m > 1 \) such that \(a^m \in \tilde{H} \). Suppose that \(X^* - \{ \tilde{H} \cup \tilde{H} \} = K \) is infinite. Then there exists \(w \in K \) containing at least \(m \) identical letters of the alphabet \(X \), say \(a \). Therefore, \(w = x_1 ax_2 a \cdots ax_m ax_{m+1} \) where \(x_i \in X^* \). Since \(a^m \in \tilde{H} \), then \(a^m < w \) and \(w \in \tilde{H} \), a contradiction. It follows then that \(H \) is quasi-maximal. \(\square \)

Remark that if \(H \) is a quasi-maximal hypercode over a finite alphabet, then \(\text{syn}(\tilde{H}) \) is a nil monoid with a disjunctive \(\mu \)-zero and \(\text{syn}(\tilde{H}) \) is subdirectly irreducible, because every nil monoid with a disjunctive zero is subdirectly irreducible [6].

3. Hypercodes and semilattices with disjunctive zero. In this section, we characterize the hypercodes \(H \) such that \(\text{syn}(\tilde{H}) \) is a semilattice with a disjunctive zero. Let us remark that if a semilattice has a zero, then the zero element is disjunctive iff the sets of the zero divisors of two distinct elements are always distinct.

If \(B(\lor, \land) \) is a boolean algebra, then the zero element \(0 \) of \(B \) (the identity element \(1 \) of \(B \)) is a disjunctive zero relative to the operation \(\land \) (the operation \(\lor \)). A semilattice or a lattice with a disjunctive zero is not in general a boolean algebra. For example, let \(L = \{0, 1, a_1, a_2, a_3\} \) with \(a_i \land a_j = 0 \) and \(a_i \lor a_j = 1 \) for \(i \neq j \). Clearly, \(0 \) is a disjunctive element for the operation \(\land \), but \(L \) is not a boolean algebra. Conditions for a subset, and, in particular, for an element of a semilattice to be disjunctive can be found in [4].

Recall that an ideal \(A \) of a monoid \(M \) is said to be cs-prime (or completely semiprime) if \(x^n \in A \), \(n \) a positive integer, implies \(x \in A \). Remark that an ideal \(A \) of a monoid \(M \) is cs-prime iff the quotient monoid \(M/P_A \) is a semilattice with a disjunctive zero.

Let \(A \) be a language over \(X \). \(A \) is said to be power free if \(xa^ny \in A \) with \(a \neq 1 \), \(x, y \in X^* \), \(n > 1 \), implies \(n = 1 \). \(A \) is said to be completely reflective if \(uvw \in H \) with \(u, v, w \in X^* \) implies \(wuv \in H \).

Proposition 2. Let \(H \) be a hypercode. Then the following properties are equivalent.

1. \(\tilde{H} \) is cs-prime.
2. \(H \) is power free and completely reflective.
3. \(\text{syn}(\tilde{H}) \) is a semilattice with disjunctive zero.
4. \(\text{syn}(\tilde{H}) \) is a semilattice.

Proof. (1) \(\Rightarrow \) (2). Suppose that \(u^3w \in H \), \(u \neq 1 \). Then \(u^3 \cdot w \cdot u^3 \cdot w \in \tilde{H} \), \((uw)^2 \in \tilde{H} \) and \(uw \cdot w \in \tilde{H} \). Hence \(h < uw \) for some \(h \in H \). From \(h < uw \) \(< uw^2 \) it follows that \(h = uw = uw^2 \), a contradiction. Therefore, \(H \) is power free.
Let m be the length of the words of minimal length in H and let $uwv \in H$ with $\lg(uvw) = m$. Then $wvu \in \tilde{H}$ because, by the above remark, $\text{syn}(\tilde{H})$ is commutative. Hence, $h < wvu$ for some $h \in H$, and, therefore, $h = wvu \in H$. Suppose now that for all words uwv of length $\lg(uvw) < n$, $uwv \in H$ implies $wvu \in H$. Let $uvw \in H$ with $\lg(uvw) = k > n$ such that for every $r \in H$ with $\lg(r) < k$ we have $\lg(r) < n$. Since $\text{syn}(\tilde{H})$ is commutative, then $wvu \in \tilde{H}$ and there exists $h \in H$ such that $h < wvu$. Suppose that $wvu \notin H$. Then $\lg(h) < \lg(uvw)$ and $\lg(h) < n$. Furthermore, $h = w_1v_1u_1$ with $w_1 < w$, $v_1 < v$, $u_1 < u$. Since $\lg(h) < n$, then $u_1v_1w_1 \in H$. But $u_1v_1w_1 < uvw$, and, therefore, $u_1v_1w_1 = uvw$, a contradiction. Hence, $wvu \in H$ and H is completely reflective.

$(2) \Rightarrow (1)$. Since \tilde{H} is an ideal, in order to show that \tilde{H} is cs-prime, it is sufficient to show that $u^2 \in \tilde{H}$ implies $u \in H$. Suppose that $u \notin \tilde{H}$. Then there exists $v \in H$ such that $v < u^2$ and $v \notin u$. Let $v = v_1v_2 \cdots v_m$ with $v_i \in X$. Since H is completely reflective, then $v_1v_2 \cdots v_m \in H$ for every permutation $i_1i_2 \cdots i_m$ of $1, 2, \ldots, m$. Since H is power free, then $v_i \neq v_j$ for $i \neq j$. From $v < u^2$, we have $v = v_1 \cdots v_r v_{r+1} \cdots v_m$ with $v_1v_2 \cdots v_r < u$ and $v_{r+1} \cdots v_m < u$. It follows then that $u = x_1v_1x_2v_2 \cdots x_mv_mx_{m+1}$ with $x_j \in X^*$ and $v' = v_1v_2 \cdots v_m$ is obtained from v by a permutation of its letters. But $v' \in H$. Therefore, $v' < u$ and $u \in \tilde{H}$, a contradiction.

$(1) \Leftrightarrow (3)$. Immediate.

$(3) \Rightarrow (4)$. Trivial.

$(4) \Rightarrow (3)$. \tilde{H} is a class modulo $P_{\tilde{H}}$, and since \tilde{H} is an ideal, then \tilde{H} is a disjunctive zero of $\text{syn}(\tilde{H})$.

Remark that in Proposition 2 the semilattice $\text{syn}(\tilde{H})$ always has an identity element. It is immediate that if S is a semilattice with a disjunctive zero and an identity element, then S is isomorphic to $\text{syn}(\tilde{H})$, where H is a power free and completely reflective hypercode H over some alphabet X.

References

Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B9, Canada