A Dirichlet norm inequality and some inequalities for reproducing kernel spaces
Author:
Jacob Burbea
Journal:
Proc. Amer. Math. Soc. 83 (1981), 279-285
MSC:
Primary 30C40; Secondary 30H05, 46E20
DOI:
https://doi.org/10.1090/S0002-9939-1981-0624914-0
MathSciNet review:
624914
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be analytic and of finite Dirichlet norm in the unit disk
with
. Then, for any
,









- [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. MR 0051437 (14:479c)
- [2] J. Burbea, On the Bergman metrics and their indicatrixes, Duke Math. J. 39 (1972), 9-18. MR 0294684 (45:3752)
- [3] -, Total positivity of certain reproducing kernels, Pacific J. Math. 67 (1976), 101-130. MR 0442662 (56:1043)
- [4] -, The curvatures of the analytic capacity, J. Math. Soc. Japan 29 (1977), 755-761. MR 0460624 (57:617)
- [5] S. Saitoh, Some inequalities for analytic functions with a finite Dirichlet integral on the unit disc, Math. Ann. 246 (1979), 69-77. MR 554132 (80j:30005)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C40, 30H05, 46E20
Retrieve articles in all journals with MSC: 30C40, 30H05, 46E20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1981-0624914-0
Keywords:
Dirichlet norm,
reproducing kernel spaces
Article copyright:
© Copyright 1981
American Mathematical Society