
proceedings of the
american mathematical society
Volume 83, Number 2, October 1981

ON THE EFFECTIVENESS OF THE

SCHRÖDER-BERNSTEIN THEOREM

J. B. REMMEL1

Abstract. The effectiveness of the classical equivalence theorem of Schröder and

Bernstein is investigated using the tools of recursion theory. We prove one result

which generalizes all the effective versions of the Schröder-Bernstein theorem

which occur in the literature. In contrast, we show that Banach's strengthening of

the Schröder-Bernstein theorem fails to be effective.

Introduction.

Theorem I (Schröder-Bernstein). Let A and B be sets and let f: A -» B and g:

B -» A be 1:1 functions, then there exists a 1:1 function h mapping A onto B.

The first satisfactory proof of Theorem I was due to Felix Bernstein and was

published in a book by Borel [2] in 1898. Schröder had announced the theorem in

1896 but his proof of it, also published in 1898, contained a flaw (see Korselt [5]).

Cantor also gave a proof of the theorem in 1897 [3] which is why the result is

sometimes referred to as the Cantor-Bernstein theorem; however Cantor's proof

used the axiom of choice, which is unnecessary. In 1924, Banach [1] published a

strenghening of the result which states that the function h in Theorem I can be

chosen so that h Cf \J g'x.

Theorem II (Banach). Given A, B,f, and g as in Theorem I, there exist partitions

A = A, u A2 and B = Bx u B2 such that f \ Ax(f restricted to A,) maps A, onto Bx

and g~x T A2 maps A2 onto B2.

In this paper we shall apply the basic ideas and techniques of recursion theory to

study the effective content of Theorems I and II. We shall show that there are

natural settings in which the Schröder-Bernstein theorem is effective. In fact, in §2

we shall prove one theorem which at once generalizes all the known effective

versions of Theorems I. In contrast, we shall show that Banach's theorem fails to

be effective in all such settings, reflecting the fact that the choices one must make

in all the usual proofs of Theorem II are in an essential way noneffective.

The recursion theory we assume can be found in [9]. Let <¡p0, m,, . . . be an

effective list of all partial recursive functions. We think of <p, as being computed by

the i'th Turing machine and write <p,s(x)l if the z'th Turing machine, when started on

a tape coding x, gives an output in s or fewer steps. We write <p¡(x)l if 3s(<p/(x)J,).
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Given subsets A and B of the natural numbers N, we write A <t B if A is Turing

reducible to B and A =t B if A <t B and B <t A. The (Turing) degree of A,

deg(A), is {B G N\B =TA}. < , >: N X N-> TV will denote a fixed 1: 1 onto

recursive pairing function. Given a partial function h: A —> N where A G N, we let

deg(A) = deg({<x, h(x)}: x G A}). 0' will denote the highest possible Turing

degree of any recursively enumerable set. If / is a function, /* will denote /

composed with itself k times, and dorn / and ran / will denote the domain and

range of /, respectively. Given a set D G N, let Xd(x) equal 1 if x G D and 0

otherwise. Given a finite set (x, < • • • < x„}, we call 2*> + ■ • • +2X» its canoni-

cal index and let 0 be the canonical index of 0. Dx will denote the finite set with

canonical index x.

1. The most natural thing to do to give an effective version of Theorem I is to

assume that the sets A and B are recursive, the functions / and g are partial

recursive, and require the function h to be partial recursive. In this case, Theorem I

is trivially effectively since we can effectively list, in order of magnitude, A as

a0,ax,... and B as bQ, bx, . . . , and then automatically the function h: A -» B

where h(a¡) = b¡ for all i will be a 1: 1 partial recursive function mapping A onto b.

However, even in this simple setting, Theorem II fails to be effective in quite a

strong way.

Theorem 1. Assume A and B are infinite recursive sets. Then there exist 1: 1

partial recursive functions f:A—>B and g: B —>A such that ran/ and ran g are

recursive and yet there is no partial recursive function h Qf U g_1 such that h maps

A 1:1 onto B.

Proof. Before constructing the functions / and g, it will be useful to review the

proof of Banach's theorem. Given / and g as in Theorem II, we introduce an

equivalence relation on A. Given x, y G A, we write x ~ v if either y G

{x, g ° fix), (g °f)2(x), ...} or x G{y, g ° fiy), (g °/)2(v), . . . }. The equiva-

lence classes of A under — and the corresponding images under g~x can be

classified as one of 4 types pictured below.

Type 1. Cycles

\\yC\yC\
9    --_--

Type 2. Two way infinite chain

Type 3. One way infinite chain with initial element not in ran g
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Type 4. One way infinite chain with initial element not in ran /

It is easy to see that equivalence classes of Types 1 or 2 can be either subsets of A,

or A2 in the partition, but the equivalence classes of Type 3 must be subsets of Ax

while equivalence classes of Type 4 must be subsets of A2.

The basic idea of our proof is to construct / and g in stages, so that only

equivalence classes of Type 2, 3, or 4 occur, and control the equivalence classes in

such a way so as to ensure no partial recursive function can satisfy the conclusion

of Banach's theorem. First, we partition A = X0 u Xx u • • • and B = Y0 u Yx

U • • • into infinite sequences of pairwise disjoint infinite recursive sets. For each

/, X¡ will be an equivalence class and Y¡ will be g~x(X¡) and we will use X¡ and Y¡ to

ensure that the z'th partial recursive function <p, is not both contained in/ u g"1 and

a mapping of A 1:1 onto B. To accomplish this for each i, it is easy to see that we

need only construct / and g so that X¡ is an equivalence class of Type 4 if <p, agrees

with/on X¡ while X, is an equivalence class of Type 3 if <p, agrees with g~x on X¡.

Fix /, then at stage 0 of our definition of / on X¡ and g on Y¡, let x0 and^0 be the

least elements of X¡ and Y¡, respectively, and let /(x0) = y0. At stage s + 1, we will

be in one of two cases. First, if <p/+1(x0) is not defined, then at stage s, we will have

specified x^s,.. ., x0,. .., xs in I,, and y^s, . . ., >>0,. .., ys in Y¡ and defined

f(xj) = yj for s < / < í and g(yf) = xJ+x for -s < j < s. Then at stage s + 1, we

will extend our sequences at both ends, that is, we let x_s_x < xs+x be the least two

elements of Xi — {x_s, . . ., x0, .. ., xs} and>'_i_, <>"J+1 be the least two elements

of   Y, - {y_s, . . . ,y0, . . . ,ys}   and  define f(x_s_x) = y__v f(xs+x) = ys+x,

g(y~s-1) = ■*-*> and 8Íy¡) = xs+\- But if 9*+lixo)l> men iet ' be the 'east stase sucn

that <p/+1(x0)|. Thus at stage t, we have two sequences x_,, . . ., Xq, . . . , x, in X¡

and y_„ . . . ,y0, . . . ,y, in Y¡ as above. Now if fft^o) ^=/(x0) = v0, then at stage

t + 1 we will extend our sequences at both ends as described above, but at all later

stages s, we will only extend our sequences at the positive end so that our

sequences will be of the form x_t_x,..., x0, . . ., xi and y_,_x, . ..,_y0,... ,ys.

Note that in this case, x_,_, will not be in ran g so that the sequence will be of

Type 4. If <p,(*o) = f(xo), then at stage t + 1, we will choose xf+1 to be the least

element of X¡ - {x_,, .. ., x0,. .., x,} and y_,-x <y,+i to be the least two ele-

ments of Y¡ - {y_„ . . . ,y0, . . . ,y,} and define g(y,,^i) = x_„ g(yt) = x,+1, and

f(xt+\) — yt+\- Then at all later stages s, we will extend our sequences only at the

positive end so that our sequences will be of the form x_t, . . . , Xq, . . . , xs and

y-t-u • • • »Jr*o» * • • *y»* Ï* tms case> y~t-i wm not De m ran/ so that the sequence

will be of Type 3.

This completes our description of / and g. It is easy to see that our construction

is completely effective so that/: A —> B and g: B -* A will be 1: 1 partial recursive

functions. For each i, we will be in one of three possible cases at the end of our

construction. (1) <p,(*o) is not defined, in which case X¡ is an equivalence class of

Type 2; (2) <p,(x0)| and q>j(x0) ¥=f(x0), in which case X¡ is an equivalence class of

Type 3; or (3) <jd,(x0)| and <p,(x0) = /(x0), in which case X¡ is an equivalence class of
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Type 4. It now follows by our previous remarks that there is no partial recursive

h Gf \j g~x mapping A 1: 1 onto B. Finally, it is easy to check that our construc-

tion ensures that ran /, B — ran /, ran g, and A — ran g are all recursively

enumerable and hence they are all recursive since A and B are recursive.   ■

We remark that since for infinitely many /', <p, is totally undefined, there will be

infinitely many equivalence classes of Type 2 for the / and g constructed in

Theorem 1 and thus there are 2*° functions h G f u g~l such that h maps A 1:1

onto B. This is necessarily the case since if /: A —» B and g: B -» A are 1:1 partial

recursive functions where A, B, ran/, and rang are recursive, and there are only

finitely many h Gf u g~x which map A 1: 1 onto B, i.e., there are only finitely

many equivalence classes of Types 1 and 2, then it is not difficult to see that all

such h are partial recursive. (This result could be regarded as an effective version of

Banach's theorem.) Nevertheless, if one is willing to drop the requirements that

ran/ and ran g are recursive in Theorem 1, then we can still construct recursive

counterexamples to Banach's theorem in the case where there is a unqiue h G f u

g~l which maps A 1:1 onto B. We say F is a recursive limit of finite sets

Eq, Ex, . . .  if there is a recursive function <pe such that for each /', Ts, = D^(f) and

Xe = hms Xe,-

Theorem 2. Let A and B be infinite recursive sets. Then for any E which is a

recursive limit of finite sets E0, Ex, . . . , there exist 1: 1 partial recursive functions f:

A —> B and g: B —> A such that there is a unique h G f U g-1 mapping A 1: 1 onto B

and yet deg(h) = deg(F).

Proof. Note that if h is partial recursive with a recursive domain, then deg(/i) is

the degree of the recursive sets, hence h is partial recursive iff E is recursive. Since

not all such E are recursive, it follows that h, in general, will not be partial

recursive.

We will construct / and g much as in Theorem 1, only this time we use the

equivalence classes to code E into h. So assume the notation of Theorem 1. For

each /, let stage 0 of the definition of / on X¡ and g on Y¡ be as before. Assume at

stage s > 0, we have defined x_K, . . . , x0, . . . , xs in X¡ and y_¡, . . . , y0, . . ., ys in

Y¡ such that js = ks or ks + 1 and/(x„) = yn for -ks < n < s and g(yn) = xn+1 for

-js < n < s. If s > 0, assume further that either (a) i G Es andjs = ks so that we

have an initial segment of Type 3, or (b) i & Es andjs = ks + 1 so that we have an

initial segment of Type 4. Then at stage s + 1, if either i is in both or out of both Es

and Es+X extend the sequences on the positive side as in Theorem 1. If i G E, but

/ £ Es+X, then let ks+x = ks,js+x = js + I, and let y, <ys+l be the least two

elements of Y¡ — {y_j, . . . ,y0,... ,ys} and xJ+1 be the least element of X¡ —

{x_K, ...,x0,...,xs} and define g(v_¿+1) = x_¿, g(ys) = x,+ l, and /(xJ+1) =

ys+x. If i & Es but i G Es+X, let ks+x = ks + l,js+x = js and let x_^+i <xJ+1 be

the least two elements of X¡ — {x_k, . . . , x0, . . ., xs} and ys+x be the least

element of Y¡ - {y_Á, . . . ,y0, . . . ,ys} and define /(x_^+i) = y_¿, g(ys) = xs+l,

andf(xs+x)=ys+x.
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As in Theorem 1, our construction ensures that/: A —> B and g: B -> A are 1: 1

partial recursive functions. Moreover, we have ensured that for each i, either (a)

i G E and X¡ is an equivalence class of Type 3 or (b) / ? £ and X¡ is an

equivalence class of Type 4. Thus there is a unique h Gf u g~l such that A

maps A 1:1 onto B and h f Xi, = / \ X¡ iff i G E. It then follows that deg(A) =

deg(F).   ■

It is not difficult to see that if A and B are recursive sets and /: A —> B and g:

B —> A are 1:1 partial recursive functions for which there are only finitely many

h Gf \j g~x mapping A 1:1 onto B, then deg(h) is recursive in 0'. By the

Shoenfield Limit Lemma [10], a set E is recursive in 0' iff £ is a recursive limit of

finite sets. Thus Theorem 2 is the best possible. We note that using a slight

modification of the construction of Theorem 2, we can diagonalize over all possible

recursive limits of finite sets to produce for any infinite recursive sets A and B, 1:1

partial recursive functions /: A -» B and g: B -» A such that there is no h G f u

g"1 mapping A 1: 1 onto B with h recursive in 0'. We shall, however, not give the

details.

We end this section with an interesting version of Banach's theorem in the

setting of bipartite graphs given by Mirsky and Perfect in [7] which will show that

our counterexamples in Theorems 1 and 2 have interesting graph theoretic interpre-

tations. A bipartite graph is a triple (A, B, E} where £ is a set of unordered pairs

{x,y} with x G A and y G B. Elements of A and B are called nodes and elements

of E are called edges. If e = (x, v} G E, we say x and j> meet e. A matching M is a

set of edges so that each node meets at most one edge in M. The following theorem

is then easily seen to be equivalent to Theorem II.

Theorem 3. Let (A, B, £) be a bipartite graph such that there are matchings Mx

and M2 so that every node of A meets an edge of Mx and every node of B meets an

edge of M2. Then there is a matching M such that every node in A or B meets an edge

in M.

We note that when put in this graph theoretic context, our counterexamples can

be seen to be related to the work of Manaster and Rosenstein [6].

2. There are two other effective versions of the Schroder-Bernstein theorem in

the literature. In both effective versions of Theorem I, A and B are assumed merely

to be subsets of TV, / and g are the restrictions of 1:1 partial recursive functions,

and we conclude that h is the restriction of a 1:1 partial recursive function.

However, both versions require some additional hypothesis because of the follow-

ing counterexample. Let E and 0 denote the even and odd numbers, respectively,

and let k: N -» E be the recursive function defined by k(e) = 2e for all e. Now if

A = E and B = A\jC where C G 0, then /: A -> B and g: B -> A where

f = k\ A and g = k \ B are the restrictions of 1:1 partial recursive functions. The

existence of the restriction of a 1: 1 partial recursive function h mapping A onto B

would imply C is r.e. Thus, choosing C to be a non-r.e. subset of 0 shows h cannot

exist in general. To state the extra hypothesis which we need, we must introduce

the notions of 1:1 equivalence due to Myhill [8] and recursive equivalence types
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due to Dekker and Myhill [4]. Given A, B G N, we say A is 1: 1 reducible to B (via

f),A <i B, if there is a total 1: 1 recursive function/: N ^> N such that Vx G N(x

G A iff fix) G B). The first of our effective versions of Theorem I is due to Myhill

[8].

Theorem 4. If A <iS and B <i A, then there exists a recursive function h

mapping N 1: 1 onto N such that h(A) = B.

Given A, B G N, we say A is recursively equivalent to B, A —r B, if there exists a

1: 1 partial recursive function p such that dom p D A and p \ A maps A onto B.

(A} = {B G N\A—r B} is called the recursive equivalence type or R.E.T. of A.

(A} can be viewed as the effective cardinality of A. We define A <r B if A is

recursively equivalent to an r.e. separated subset of B, i.e., if there are disjoint r.e.

set Wx and W2 such that Wx u W2 D B and A ~, B n W.. Given R.E.T.S a and

ß, we define a <r ß if there exist A G a and B G ß with A <r B. The important

result that <r partially orders the R.E.T.S follows from the next theorem due to

Dekker and Myhill [4] which is yet another effective version of the Schröder-Bern-

stein theorem.

Theorem 5. If A <r B and B <r A, then A ~r B.

Theorems 4 and 5 are different since it is easy to construct counterexamples to

show that < i and < r do not coincide. Our next result will yield Theorems 4 and 5

as well as the trivial effective version of Theorem I mentioned in § 1 as corollaries.

We wish to acknowledge that one of the basic ideas for the proof of Theorem 6 to

follow comes from an unpublished proof of Theorem 5 due to A. Manaster.

Theorem 6. Assume A, B G N and f and g are 1:1 partial recursive functions

where dom / D A, dom g D B, and there exist r.e. sets Wx, W2, Ux, and U2 such

that (i) Wxr\ W2 = 0= f/,n U2, (ii) f(A) G Wx n A andfidom f - A) n B G
W2, and (iii) g(B) G Ux n A and g(dom g — B) n A G U2. Then there exists a 1:1

partial recursive function h such that A G dom h and h\ A maps A onto B.

Proof. First we claim, we can without loss of generality assume dom/, ran g, Ux

and U2 are subsets of the even numbers E and dom g, ran /, Wx, and W2 are

subsets of the odd numbers 0. For if we are not in such a situation, let k: N ^> E

be defined by k(e) = 2e for all e and I: N -* & be defined by 1(e) = 2e + 1 and

then let^' = k(A), U'x = k(Ux), U'2 = k(U^ B' = 1(B), W'x = l(Wx), W'2 = l(W¿,
f' = l°f° k~l, and g' = k ° g ° /"'. Our argument will show there is 1: 1 recur-

sive function h' with dom h' G E and ran h' G & such that h! \ A' maps A' onto

B'. Then h = l~x ° h' ° k will be a 1: 1 partial recursive function required by the

theorem.

So assume dom / ran g, Ux, U2G E and dom g, ran / Wx, and W2 G 0. We

shall build h in stages i. For any s, let fs = {(x, /(x))|x < s & fs(x)l} and

gs = {(x, g(x))|x < s & gs(x)l}. At stage s, we call a sequence of distinct elements

(a0, ax, . . . , a„} a chain if either: (i) a0 G domfs, (oq, . . . , a„) is of the form (a0,

fs(a0), gs °fs(a0), f ° gs °fs(a0), . . . >, a0,a2, a4, . . .   are in £/,, and ax, a3, . . .
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are in Wx; or (ii) a0 G dom gs, (a0, . . ., a„> is of the form <an, g*(a¿), fs ° gs(a0),

gs ° fs ° gs(<*o)> ■ ■ ■ )> ao> a2> • • • are m **V an<* öi, a3,.. . are in Ux. We call a

chain <a0, . . ., a„> c/asei/ at stage s if either a0 G dom f and gJ (üq) = an or

a0 G dom gs and/"5 (a0) = an. We call a chain C = <a0, . . . , a„> maximal at stage

5 if either C is closed and a0 is the minimum element of C or C is not closed and C

is not a proper subsequence of any chain at stage j. Let C[,.. . , C* denote the

maximal chains at stage 5. We note that our assumptions on Wx, W2, Ux, and U2

ensure that for any maximal chain Cf either (a) Cf n E is contained in A and

Cf n 0 is contained in B or (b) C/ n £ D A = 0 and C/ n 0 n 5 = 0. We will
define a finite function /jJ at stage s so that if hs(x) = v, then x and v lie in the

same maximal chain. Moreover, we will ensure that for all s, hs G hs+x. We say

x G N is free at stage j if either x G E — dom hs or x G 0 - ran hs. hs will be

defined so that for any maximal chain Cf which is not closed, both Cf n E and

Cf n 0 contain at least one free element. This given, our instructions at stage

5 + 1 are very simple. One simply considers the set of maximal chains at stage

s + 1, Cj*\ . . . , Q+1. For any chain C/+1 which is either closed and C/+1 n E

and Cf*1 n 0 contain free elements or is such that both Cf*1 n E and Cf+X n 0

contain at least two free elements at stage s, we take the least free member of

C¡+x n E, x, and the least free member of Cf*1 nfij, and define hs+x(x) = y.

We let h = Uj h' so that automatically h is a 1:1 partial recursive function since

our procedure is completely effective.

It easily follows from our definitions that any maximal chain Cf at stage s is

contained in a maximal chain Cf+X at stage 5+1. Thus for any Cf there will be a

unique sequence Cf = C* G C£*x G C£2 G ■ ■ ■ so we let C = (Jí>s C*. By our

remarks earlier, either C G A u B or C n (A u B) = 0 In case Cçiufi,C

can be pictured as one of the Types 1-4 of Theorem 1 and it is easy to check that

our choice having h send the least free element of E n Cf+X to least free element

of 0 n Cf*1 will ensure that h maps E D C 1:1 onto 0 n C. It then follows that

h maps A 1:1 onto B.   ■

Finally we should remark how the three effective versions of Theorem I all are

special cases of this theorem. For Theorem 4, we have total 1:1 recursive / and g

such that f(A) G B, f(N - A) G N - B, g(B) G A and g(N - B) G N - A. We
can then take i/, = Wx = N and U2 = W2 = 0. In this case, it is not difficult to

check that the h constructed above will be a total recursive function which maps ./V

onto N. Note in Theorem 5, we have a much stronger kind of separation of the

range of / and g within A and B, respectively, than we require in Theorem 6. That

is, in Theorem 5, / and g are 1: 1 partial recursive functions for which there are r.e.

sets Mx, M2, Nx and N2 such that f(A) n B G Mx, B - f(A) G M2, g(B) n A G

Nx, and A - g(B) G N2. Thus, clearly U¡ = M¡ and W¡ = N,. for i - 1, 2 satisfy

the hypothesis of Theorem 6. Finally in the trivial case where A and B are

recursive, we can assume dom / = A and dom g = B so that we can let Wx = Ux

= yV and W2 = U2 = 0.

We should note that all the counterexamples for Banach's theorem described in

§1 satisfy the hypothesis of Theorem 5. In fact, our first counterexample given in
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Theorem 1 shows Banach's theorem fails, even under the strongest possible type of

separation conditions for ran f in B and ran g in A.
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