Recursively categorical linear orderings
Author:
J. B. Remmel
Journal:
Proc. Amer. Math. Soc. 83 (1981), 387391
MSC:
Primary 03C57; Secondary 03C65, 03D45, 06A05
MathSciNet review:
624937
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A recursive structure is recursively categorical if every recursive structure isomorphic to is recursively isomorphic to . We classify the recursively categorical linear orderings as precisely those recursive linear orderings which have only finitely many elements with an immediate successor.
 [1]
C.
J. Ash and A.
Nerode, Intrinsically recursive relations, Aspects of
effective algebra (Clayton, 1979) Upside Down A Book Co., Yarra Glen,
Vic., 1981, pp. 26–41. MR 629248
(83a:03039)
 [2]
S.
S. Gončarov, Certain properties of the constructivization of
Boolean algebras, Sibirsk. Mat. Ž. 16 (1975),
264–278, 420. (loose errata) (Russian). MR 0381957
(52 #2846)
 [3]
A.
I. Mal′cev, On recursive Abelian groups, Dokl. Akad.
Nauk SSSR 146 (1962), 1009–1012 (Russian). MR 0151378
(27 #1363)
 [4]
A. B. Manaster and J. B. Remmel, Recursively categorical decidable dense two dimensional partial orderings (to appear).
 [5]
P. E. LaRoche, Recursively presented Boolean algebras, Notices Amer. Math. Soc. 24 (1977), A552.
 [6]
A. T. Nurtazin, Strong and weak constructivizations and computable families, Algebra and Logic 13 (1975), 177184.
 [7]
J. B. Remmel, Recursive isomorphisms of recursive Boolean algebras, J. Symbolic Logic (to appear).
 [8]
, Recursive Boolean algebras with recursive sets of atoms, J. Symbolic Logic (to appear).
 [9]
, Recursive isomorphisms of recursive Boolean algebras and atomic elements (in preparation).
 [10]
R. L. Smith, Two theorems on autostability in groups (Proc. Conf. Math. Logic, Univ. Connecticut), Lecture Notes in Math, (to appear).
 [1]
 C. J. Ash and A. Nerode, Intrinsically recursive relation, Effective Aspects of Algebra (J. N. Crossley, ed.), Upsidedown A Book Co., ClaytonVictoria, Australia, 1980. MR 629248 (83a:03039)
 [2]
 S. S. Goncharov, Some properties of the constructivization of Boolean algebras, Sibirsk Mat. Ž. 16 (1975), 264278. MR 0381957 (52:2846)
 [3]
 A. I. Mal'cev, On recursive abelian groups, Soviet Math. 3 (1962), 14311432. MR 0151378 (27:1363)
 [4]
 A. B. Manaster and J. B. Remmel, Recursively categorical decidable dense two dimensional partial orderings (to appear).
 [5]
 P. E. LaRoche, Recursively presented Boolean algebras, Notices Amer. Math. Soc. 24 (1977), A552.
 [6]
 A. T. Nurtazin, Strong and weak constructivizations and computable families, Algebra and Logic 13 (1975), 177184.
 [7]
 J. B. Remmel, Recursive isomorphisms of recursive Boolean algebras, J. Symbolic Logic (to appear).
 [8]
 , Recursive Boolean algebras with recursive sets of atoms, J. Symbolic Logic (to appear).
 [9]
 , Recursive isomorphisms of recursive Boolean algebras and atomic elements (in preparation).
 [10]
 R. L. Smith, Two theorems on autostability in groups (Proc. Conf. Math. Logic, Univ. Connecticut), Lecture Notes in Math, (to appear).
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
03C57,
03C65,
03D45,
06A05
Retrieve articles in all journals
with MSC:
03C57,
03C65,
03D45,
06A05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198106249371
PII:
S 00029939(1981)06249371
Article copyright:
© Copyright 1981
American Mathematical Society
