NON-(CA) ANALYTIC GROUPS AND GROUPS OF ROTATIONS

T. CHRISTINE STEVENS

Abstract. It is known that every non-(CA) analytic group arises from the action of a vector group on a (CA) analytic group. We prove here that this action always involves a vector group of rotations acting on another vector group.

1. Introduction. For any analytic group G, the group $\text{Aut}(G)$ of all continuous automorphisms of G is a Lie group in the generalized compact-open topology. (See, for example, p. 40 of [2].) G is a (CA) analytic group if the group of inner automorphisms of G is closed in $\text{Aut}(G)$.

Zerling [7, p. 182] has shown that every non-(CA) analytic group arises from the action of a vector group on a (CA) analytic group. The examples in [3], [4], [6], and [7], however, take a much less general form: all involve the action of a vector group of rotations on another vector group. In the present article we show that this is an essential feature of all non-(CA) analytic groups, rather than an accidental property of the particular examples in the literature. Although we will confine our attention to simply-connected, solvable analytic groups, this restriction does not materially affect the scope of our result. For an analytic group G is (CA) if and only if its simply-connected covering group G' is (CA), since G is the quotient of G' by a central subgroup. Moreover, Van Est [5, pp. 559–561] has demonstrated that G is (CA) if and only if its radical is (CA).

Before stating our result precisely, we must introduce some notation. First we describe in more detail the principal result in [7]. If G is a non-(CA) analytic group, then G has the form $M \otimes V$, where M is a (CA) analytic group and V is a vector subgroup of $\text{Aut}(M)$ whose closure in $\text{Aut}(M)$ is compact. We will say that $G = M \otimes V$ is a standard decomposition of G.

Now let θ be an element of the set R of real numbers. We will let R_θ denote the 2-by-2 matrix which corresponds to the rotation of R^2 through a counterclockwise angle of θ. If n is an even natural number, let T_n be the subgroup of $\text{Gl}(n, R)$ consisting of all matrices of the form shown in Figure 1, where $k = n/2$ and $\theta_1, \ldots, \theta_k \in R$. If $n > 1$ is odd, we define a homomorphism $h: \text{Gl}(n - 1, R) \to \text{Gl}(n, R)$ by

\[h(A) = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}, \quad A \in \text{Gl}(n - 1, R),\]

and then let $T_n = h(T_{n-1})$. We can now proceed to our theorem.
THEOREM. Let G be a simply-connected, solvable, non-(CA) analytic group with standard decomposition $G = M \circledast V$. Let G_1 and G_2 be, respectively, the derived groups of G and G_1. Then $G_1 \subseteq M$ and $(G_1/G_2) \circledast V$ is a non-(CA) analytic group which is isomorphic, both topologically and algebraically, with $\mathbb{R}^n \circledast W$, where $n > 4$ is the dimension of G_1/G_2 and W is a vector subgroup of T^n whose closure in T^n is compact.

2. Proof of theorem. Since V is abelian and G is not, it is clear that $G_1 \subseteq M$ and $G_1 \neq G_2$. That G_1 and G_1/G_2 are simply-connected analytic groups follows from the fact that G is simply-connected and G_1 and G_2 are normal in G [2, pp. 135–136]. Since G_1/G_2 is also abelian, it follows that G_1/G_2 is isomorphic to \mathbb{R}^n for some $n > 0$.

We claim that V acts effectively on the vector group G_1/G_2. From Theorem 3.2 of [7] we know that V acts effectively on G_1 and may thus be regarded as a vector subgroup of $\text{Aut}(G_1)$ with compact closure S. To establish our claim, we will show that S acts effectively on G_1/G_2. Let g_1 and g_2 be the Lie algebras of G_1 and G_2, respectively. The isomorphism of $\text{Aut}(G_1)$ with $\text{Aut}(g_1)$ defines a representation of S into $\text{Gl}(g_1)$ which must be semisimple because S is compact. Therefore there exists an S-invariant subspace (not necessarily a subalgebra) \mathfrak{m} of g_1 such that $g_1 = g_2 \oplus \mathfrak{m}$. If $s \in S$ induces the identity automorphism on G_1/G_2, then S acts as the identity not only on \mathfrak{m} but also on the Lie algebra \mathfrak{a} generated by \mathfrak{m}. An exercise in [1, Exercise 4, p. 91], however, shows that $\mathfrak{a} = g_1$, so that s must be the identity on all of G_1. This demonstrates that S acts effectively on G_1/G_2 (and, incidentally, that $n > 2$).

To finish the proof, let us choose some specific isomorphism of G_1/G_2 with \mathbb{R}^n. Regarding V as a nonclosed vector subgroup of $\text{Gl}(n, \mathbb{R})$, we know that V is contained in a maximal torus T of $\text{Gl}(n, \mathbb{R})$. Examination of the centralizer of T_n in $\text{Gl}(n, \mathbb{R})$ reveals that T_n is also a maximal torus in $\text{Gl}(n, \mathbb{R})$ and is therefore conjugate to T [2, pp. 152, 181]. Let A be an element of $\text{Gl}(n, \mathbb{R})$ such that
$T_n = AT_A^{-1}$, and let $W = AV_A^{-1}$. It is easy to verify that the function $f: (G_1/G_2) \otimes V \to \mathbb{R}^n \otimes W$ defined by $f(x, v) = (A(x), AvA^{-1})$ for $x \in G_1/G_2, v \in V$, is an isomorphism of Lie groups. Since W is a nonclosed vector subgroup of T_n, it follows immediately that $n \geq 4$ and that neither $\mathbb{R}^n \otimes W$ nor $(G_1/G_2) \otimes V$ is (CA).

References