Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The space of retractions of a compact $ Q$-manifold is an $ l\sp{2}$-manifold


Author: Katsuro Sakai
Journal: Proc. Amer. Math. Soc. 83 (1981), 421-424
MSC: Primary 57N20; Secondary 54C99
DOI: https://doi.org/10.1090/S0002-9939-1981-0624944-9
MathSciNet review: 624944
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove that the space of retractions of a compact Hilbert cube manifold is an $ {l^2}$-manifold. This answers a question raised by T. A. Chapman.


References [Enhancements On Off] (What's this?)

  • [1] R. D. Anderson and R. M. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330. MR 0246327 (39:7631)
  • [2] T. A. Chapman, The space of retractions of a compact Hilbert cube manifold is an ANR, Topology Proc. 2 (1977), 409-430. MR 540619 (81e:57014)
  • [3] H. Toruńczyk, Characterizing Hilbert space topology, Inst. Math. Polish Acad. Sci., preprint 143.
  • [4] R. D. Anderson, D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. (to appear). MR 656491 (83j:57009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N20, 54C99

Retrieve articles in all journals with MSC: 57N20, 54C99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0624944-9
Keywords: Space of retractions, ANR, $ Q$-manifold, $ {l^2}$-manifold
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society