Hereditary finitely generated algebras satisfying a polynomial identity

Authors:
Ellen E. Kirkman and James Kuzmanovich

Journal:
Proc. Amer. Math. Soc. **83** (1981), 461-466

MSC:
Primary 16A14; Secondary 16A38

DOI:
https://doi.org/10.1090/S0002-9939-1981-0627670-5

MathSciNet review:
627670

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If is a right and left p.p. ring which satisfies a polynomial identity and is a finitely generated algebra over its center, then , where is a semiprime ring having a von Neumann regular classical quotient ring which is module-finite over its center and has nonzero prime radical at each of its Pierce stalks. If is right and left hereditary, then is an order over a commutative hereditary ring in the sense of [**7**]; the ring is then a direct product of finitely many indecomposable piecewise domains.

**[1]**G. Bergman,*Hereditary commutative rings and centres of hereditary rings*, Proc. London Math. Soc. (3)**23**(1971), 214-236. MR**0309918 (46:9022)****[2]**J. Fuelberth, E. Kirkman and J. Kuzmanovich,*Hereditary module-finite algebras*, J. London Math. Soc. (2)**19**(1979), 268-276. MR**533325 (80k:16006)****[3]**R. Gordon and L. W. Small,*Piecewise domains*, J. Algebra**23**(1972), 553-564. MR**0309984 (46:9087)****[4]**S. Jøndrup,*The centre of a right hereditary ring*, J. London Math. Soc. (2)**15**(1977), 211-212. MR**0442023 (56:412)****[5]**-,*Rings of quotients of some semiprime PI rings*, Comm. Algebra**4**(1976), 51-75.**[6]**-,*Homological dimension of some P.I. rings*, Preprint Series, no. 16, Københavns Universitet, Københavns, 1979.**[7]**E. Kirkman and J. Kuzmanovich,*Orders over hereditary rings*, J. Algebra**55**(1978), 1-27. MR**515756 (80d:16004)****[8]**R. S. Pierce,*Modules over commutative regular rings*, Mem. Amer. Math. Soc., no. 70 (1967). MR**0217056 (36:151)****[9]**C. Procesi,*Rings with polynomial identities*, Dekker, New York, 1973. MR**0366968 (51:3214)****[10]**J. C. Robson and L. W. Small,*Hereditary prime P.I. rings are classical hereditary orders*, J. London Math. Soc. (2)**8**(1974), 499-503. MR**50**#2236. MR**0349743 (50:2236)****[11]**L. W. Small,*Semihereditary rings*, Bull. Amer. Math. Soc.**73**(1967), 656-658. MR**35**#2926. MR**0212051 (35:2926)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A14,
16A38

Retrieve articles in all journals with MSC: 16A14, 16A38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1981-0627670-5

Article copyright:
© Copyright 1981
American Mathematical Society