Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Banach spaces which always contain supremum-attaining elements


Author: Peter D. Morris
Journal: Proc. Amer. Math. Soc. 83 (1981), 496-498
MSC: Primary 46B20
DOI: https://doi.org/10.1090/S0002-9939-1981-0627677-8
MathSciNet review: 627677
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if a weakly compactly generated Banach space $ X$ has the property that, for every closed, bounded convex subset $ K$ of $ {X^ * }$, there exists a nonzero element of $ X$ which attains its supremum on $ K$, then $ X$ contains no copy of $ {l^1}$.


References [Enhancements On Off] (What's this?)

  • [1] R. Bourgin, Notes on the Radon-Nikodym property (to appear).
  • [2] J. Diestel, Geometry of Banach spaces, Lecture Notes in Math., vol. 485, Springer-Verlag, New York and Berlin, 1975. MR 0461094 (57:1079)
  • [3] N. Dunford and B. J. Pettis, Linear transformations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323-392. MR 0002020 (1:338b)
  • [4] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. MR 0390721 (52:11544)
  • [5] A. Pelczynski, On $ C(S)$-subspaces of separable Banach spaces, Studia Math. 31 (1968), 513-522. MR 0234261 (38:2578)
  • [6] J. Rainwater, Univ. of Washington Seminar Notes, Fall 1976.
  • [7] C. Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodym property, Israel J. Math. 29 (1978), 408-412. MR 0493268 (58:12297)
  • [8] J. J. Uhl, A note on the Radon-Nikodym property for Banach spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 113-115. MR 0482100 (58:2187)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20

Retrieve articles in all journals with MSC: 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0627677-8
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society