A NOTE ON INTERTWINING M-HYPONORMAL OPERATORS

Abstract. If $AX = XB^*$ with A and B M-hyponormal, then $A^*X = XB$. Furthermore, $(\text{ran } X)^\perp$ reduces A, ker X reduces B, and $A|_{(\text{ran } X)^\perp}$ and $B^*|_{\text{ker } X}$ are unitarily equivalent normal operators. An asymptotic version is also proved.

Let \mathcal{H} be a Hilbert space. A bounded operator A on \mathcal{H} is called dominant by J. Stampfli and B. Wadhwa [4] if, for all complex λ, range$(A - \lambda) \subseteq \text{range}(A - \lambda)^*$, or, equivalently, if there is a real number $M_\lambda > 1$ such that

$$\| (A - \lambda)^* f \| \leq M_\lambda \| (A - \lambda) f \|$$

for all f in \mathcal{H}. If there is a constant M such that $M_\lambda < M$ for all λ, A is called M-hyponormal, and if $M = 1$, A is hyponormal.

Stampfli and Wadhwa showed in [4, Theorem 1] that if A is dominant, B is hyponormal, X is one-to-one and has dense range, and if $AX = XB^*$, then A and B are normal. M. Radjabalipour improved this result by allowing B to be M-hyponormal [3, Theorem 3(a)]. Of course, the condition that A and B are normal allows one to conclude immediately by the usual Putnam-Fuglede theorem that $A^*X = XB$. S. K. Berberian [2] has obtained the latter result under the conditions that A and B are hyponormal and X is Hilbert-Schmidt (but not one-to-one or with dense range). It seems to have escaped notice, however, that if A and B are both M-hyponormal, the conclusion that $A^*X = XB$ can be reached with no restrictions on X at all; moreover, by employing both intertwining equations one can determine precisely the subspaces on which A and B must be normal. We will need two other results from [3]:

Theorem A (Radjabalipour). Let A be dominant and let \mathcal{M} be an invariant subspace of A for which $A|_{\mathcal{M}}$ is normal. Then \mathcal{M} reduces A.

Theorem B (Radjabalipour). If A and A^* are M-hyponormal then A is normal.

We begin with a symmetric version.

Theorem 1. Let A be M-hyponormal and suppose that $AX =XA^*$. Then $A^*X = XA$.

Received by the editors September 12, 1980.

1980 Mathematics Subject Classification. Primary 47B20.

Key words and phrases. Normal operator, M-hyponormal operator, intertwining.

The first and third authors were partially supported by grants from the Research Grants Committee of the University of Alabama.

© 1981 American Mathematical Society

0002-9939/81/0000-0516/$01.75

514
PROOF. Let $X = H + iJ$ be the Cartesian decomposition of X. By taking the adjoint of the intertwining equation, we obtain $AX^* = X^*A^*$ and thus $AH = HA^*$ and $AJ = JA^*$.

Let \mathcal{M} be the kernel of H and decompose the Hilbert space as $\mathcal{M}^\perp \oplus \mathcal{M}$. \mathcal{M} is clearly invariant for A^* and we can represent A and H as operator matrices:

$$A = \begin{pmatrix} C & D \\ 0 & E \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} K & 0 \\ 0 & 0 \end{pmatrix}. $$

C is M-hyponormal and since $AH = HA^*$ we have $CK = KC^*$ and because K is one-to-one and has dense range we conclude that C is normal by [3, Theorem 3(a)]. By Theorem A, $D = 0$ and it follows that $A^*H = HA$. Similarly, $A^*J = JA$ and thus $A^*X = XA$.

Theorem 2. If A and B are M-hyponormal and $AX = XB^*$ then $A^*X = XB$.

Proof. Let

$$\tilde{A} = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \quad \text{and} \quad \tilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}. $$

\tilde{A} is M-hyponormal and $\tilde{A}\tilde{X} = \tilde{X}\tilde{A}^*$ and Theorem 1 yields the desired result.

The next theorem, which generalizes Theorem 3(a) of [3], identifies the subspaces on which A and B must be normal.

Theorem 3. Let A, B and X be as in Theorem 2. Then

(a) $(\text{ran } X)^\perp$ reduces A and $\ker X$ reduces B.

(b) $A|(\text{ran } X)^\perp$ and $B^*|\ker X$ are unitarily equivalent normal operators.

Proof. (a) By Theorem 2, $AXX^* = XB^*X^* = XX^*A$. Thus A commutes with XX^* and so $(\text{ran } X)^\perp = (\text{ran } XX^*)^\perp$ reduces A. Similarly B commutes with X^*X and $\ker X = \ker X^*X$ reduces B.

(b) Let $X = UP$ be the polar decomposition of X. Since B commutes with P as above, we have

$$(AU - UB^*)P = 0.$$

Let $\mathcal{K}_1 = \ker^\perp X = \ker^\perp P$ and let $\mathcal{K}_2 = (\text{ran } X)^\perp$; let $A_2 = A|\mathcal{K}_2$ and $B_1 = B|\mathcal{K}_1$. Let $V: \mathcal{K}_1 \rightarrow \mathcal{K}_2$ be defined by $Vf = Uf$ for all $f \in \mathcal{K}_1$. The equation above then becomes

$$A_2V = VB_1^*. $$

Since V is an invertible isometry we have that A_2 is unitarily equivalent to B_1^* and since A_2 and B_1 are both M-hyponormal, Theorem B implies that both are normal. The proof is complete.

We now proceed to an asymptotic version, which is most readily attained by employing some machinery developed by Berberian [1]. We sketch Berberian's construction here; the details are in [1]. Let \mathcal{H} be a Hilbert space and let \mathcal{B} be the set of bounded sequences of vectors (f_n), with $f_n \in \mathcal{H}$. Let "glim" denote a generalized limit defined on the collection of bounded sequences of complex numbers, and let $\mathcal{K} = \{(f_n) \in \mathcal{B}: \text{glim}(\|f_n\|) = 0\}$. Then the set $\mathcal{P} = \mathcal{B}/\mathcal{K}$ has a pre-Hilbert space structure with the inner product $(\langle f_n + \mathcal{K}, g_n + \mathcal{K} \rangle) = \text{glim}(f_n, g_n)$. The map $f \rightarrow \{f, f, \ldots\} + \mathcal{K}$ is a natural imbedding of \mathcal{H} into \mathcal{P}.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let \(\mathcal{K} \) be the completion of \(\mathcal{P} \). If \(\{ T_n \} \) is a bounded sequence of operators on \(\mathcal{K} \) and if \(\{ f_n \} \subset \mathcal{K} \), then the sequence \(\{ T_n f_n \} \subset \mathcal{K} \) and it follows that the function that maps \(\{ g_n \} \subset \mathcal{K} \) to \(\{ T_n g_n \} \subset \mathcal{K} \) defines a bounded linear operator on \(\mathcal{K} \) which we call \(\phi((T_n)) \). It is easy to check that \(\phi((T_n)) = 0 \) if and only if \(\| T_n \| \to 0 \), that \(\phi((T_n^*)) = \phi((T_n))^* \), and that \(\phi((T_n)) \) is positive if and only if \(T_n - |T_n| \to 0 \), in the strong operator topology.

Theorem 4. Let \(\{ T_n \} \) and \(\{ S_n \} \) be bounded sequences for which there exists a number \(M \) such that, for all complex numbers \(\lambda \),

\[
M^2(T_n - \lambda)^*(T_n - \lambda) - (T_n - \lambda)(T_n - \lambda)^* \\
- |M^2(T_n - \lambda)^*(T_n - \lambda) - (T_n - \lambda)(T_n - \lambda)^*| \to 0 \quad \text{(strongly)}
\]

and

\[
M^2(S_n - \lambda)^*(S_n - \lambda) - (S_n - \lambda)(S_n - \lambda)^* \\
- |M^2(S_n - \lambda)^*(S_n - \lambda) - (S_n - \lambda)(S_n - \lambda)^*| \to 0 \quad \text{(strongly)}.
\]

Let \(\{ X_n \} \) be a bounded sequence and suppose that \(T_n X_n - X_n^* S \to 0 \). Then \(T_n^* X_n - X_n S_n \to 0 \).

Proof. The conditions on \(\{ T_n \} \) and \(\{ S_n \} \) imply that \(\phi((T_n)) \) and \(\phi((S_n)) \) are \(M \)-hyponormal. The equation

\[
\phi((T_n))\phi((X_n)) = \phi((X_n))\phi((S_n))^*
\]

holds, and Theorem 2 yields the result.

Corollary. If \(T \) and \(S \) are \(M \)-hyponormal and if \(TX_n - X_n^* S \to 0 \) for a bounded sequence \(\{ X_n \} \), then \(T^* X_n - X_n S \to 0 \) as well.

References

Department of Mathematics, University of Alabama, University, Alabama 35486

Department of Mathematics, Texas A&M University, College Station, Texas 77843

Department of Mathematics, University of Alabama, University, Alabama 35486