Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compact weighted endomorphisms of $ C(X)$


Author: Herbert Kamowitz
Journal: Proc. Amer. Math. Soc. 83 (1981), 517-521
MSC: Primary 47B38; Secondary 46J10
DOI: https://doi.org/10.1090/S0002-9939-1981-0627682-1
MathSciNet review: 627682
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A weighted endomorphism of an algebra is an endomorphism followed by a multiplier. In this note we characterize compact weighted endomorphisms of the Banach algebra $ C(X)$, and also determine their spectra.


References [Enhancements On Off] (What's this?)

  • [1] W. Arendt, Über das Spektrum regulären Operatoren, Dissertation, Universität zu Tübingen, 1979.
  • [2] -, Spectral properties of Lamperti operators, preprint.
  • [3] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.
  • [4] H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J. 27 (1978), 581-610. MR 0482354 (58:2427)
  • [5] -, Compact operators of the form $ u{C_\varphi }$, Pacific J. Math. 80 (1979), 205-211. MR 534709 (80f:47027)
  • [6] A. K. Kitover, Spectrum of automorphisms with weight and the Kamowitz-Scheinberg Theorem, Functional Anal. Appl. 13 (1979), 70-71. MR 527528 (80f:46053)
  • [7] -, Spectral properties of automorphisms with weight in uniform algebras, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92 (1979), 288-293, 326. (Russian; English summary) MR 566761 (81b:47003)
  • [8] H. H. Schaeffer, M. Wolff and W. Arendt, On lattice isomorphisms with positive real spectrum and groups of positive operators, Math. Z. 164 (1978), 115-123. MR 517148 (80b:47048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B38, 46J10

Retrieve articles in all journals with MSC: 47B38, 46J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0627682-1
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society