A rigid space for which is homogeneous; an application of infinite-dimensional topology

Author:
Jan van Mill

Journal:
Proc. Amer. Math. Soc. **83** (1981), 597-600

MSC:
Primary 54G15; Secondary 57N20

DOI:
https://doi.org/10.1090/S0002-9939-1981-0627701-2

MathSciNet review:
627701

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a rigid (= no autohomeomorphisms beyond the identity) space such that is homogeneous. In fact, is homeomorphic to the Hilbert cube. This answers a question of A. V. Arhangel'skiĭ.

**[1]**A. V. Arhangel'skiĭ,*Structure and classification of topological spaces and cardinal invariants*, Russian Math. Surveys**33**(1978), 33-96. MR**526012 (80i:54005)****[2]**T. A. Chapman,*Lectures on Hilbert cube manifolds*, CBMS Regional Conf. Series in Math., no. 28, Amer. Math. Soc., Providence, R. I., 1976. MR**0423357 (54:11336)****[3]**R. J. Daverman,*Embedding phenomena based upon decomposition theory: Wild Cantor sets satisfying strong homogeneity properties*, Proc. Amer. Math. Soc.**75**(1979), 177-182. MR**529237 (80k:57031)****[4]**-,*A strongly homogeneous but wildly embedded Cantor set in the Hilbert cube*(to appear).**[5]**W. E. Haver,*Mappings between ANR's that are fine homotopy equivalences*, Pacific J. Math.**58**(1975), 457-461. MR**0385865 (52:6724)****[6]**G. Kozlowski,*Images of ANR's*, Trans. Amer. Math. Soc. (to appear).**[7]**K. Kuratowski,*Sur la puissance de l'ensembele des "nombres de dimension" de M. Fréchet*, Fund. Math.**8**(1925), 201-208.**[8]**A. G. Kurosh,*The theory of groups*. II, Chelsea, New York, 1960. MR**0109842 (22:727)****[9]**J. van Mill,*Homogeneous subsets of the real line*(to appear). MR**660152 (83h:54048)****[10]**E. H. Spanier,*Algebraic topology*, McGraw-Hill, New York, 1966. MR**0210112 (35:1007)****[11]**H. Toruńczyk,*On CE-images of the Hilbert cube and characterization of**-manifolds*, Fund. Math.**106**(1980), 31-40. MR**585543 (83g:57006)****[12]**R. Y. T. Wong,*A wild Cantor set in the Hilbert cube*, Pacific J. Math.**24**(1968), 189-193. MR**0221487 (36:4539)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54G15,
57N20

Retrieve articles in all journals with MSC: 54G15, 57N20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1981-0627701-2

Article copyright:
© Copyright 1981
American Mathematical Society