Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Über gewöhnliche Differentialungleichungen zweiter Ordnung

Author: Roland Lemmert
Journal: Proc. Amer. Math. Soc. 83 (1981), 720-724
MSC: Primary 34A30
MathSciNet review: 630027
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theorem about the separation of sub- and superfunctions $ \upsilon $ and $ w$ by solutions of an ordinary differential equation of second order is proved, where $ \upsilon \geqslant w$ throughout the given interval. Examples show that the condition imposed on the right side $ f$ of the equation is sharp, and that an analogous theorem is not true for Laplace's equation, even in the case $ f \equiv 0,\upsilon $ sub- and $ w$ superharmonic.

References [Enhancements On Off] (What's this?)

  • [1] E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937), 363-371. MR 1563543
  • [2] M. Nagumo, Über die Differentialgleichung $ y'' = f(x,y,y')$, Proc. Phys. Math. Soc. Japan 19 (1937), 861-866.
  • [3] K. W. Schrader, Differential inequalities for second and third-order equations, J. Differential Equations 25 (1977), 203-215. MR 0457828 (56:16032)
  • [4] A. Zygmund, Trigonometric series, vol. I, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A30

Retrieve articles in all journals with MSC: 34A30

Additional Information

Keywords: Generalized convex functions, separation theorem
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society