CONTINUITY OF BEST APPROXIMANTS

D. LANDERS AND L. ROGGE

Abstract. Let C_n, $n \in \mathbb{N}$, be Φ-closed lattices in an Orlicz-space $L_\Phi(\Omega, \mathcal{A}, \mu)$ and assume that C_n increases or decreases to a Φ-closed lattice C_∞. Let f_n, $n \in \mathbb{N}$, be Φ-measurable real valued functions with $f_n \to f$ μ-a.e. and $\sup |f_n| \in L_\Phi$. If g_n is a best Φ-approximant of f_n in C_n, it is shown that $\lim_{n \to \infty} g_n$ and $\lim_{n \to \infty} g_n$ are best Φ-approximants of f in C_∞.

1. Introduction and notations. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ be a convex function with $\Phi(0) = 0$ and $\Phi \not\equiv 0$. Denote by $L_\Phi(\Omega, \mathcal{A}, \mu)$ respectively $L_\infty(\Omega, \mathcal{A}, \mu)$ the system of all μ-equivalence classes of \mathcal{A}-measurable functions f such that $\int \Phi(\alpha|f|) \, d\mu < \infty$ for some $\alpha > 0$ respectively for all $\alpha > 0$. L_ϕ and L_∞ are linear spaces with $L_\Phi \subseteq L_\infty$; if $\Phi(x) = x^p$ then $L_\Phi = L^p$ and we obtain the spaces L_p, $p > 1$. If $C \subseteq L_\Phi$ and $f \in L_\Phi$ denote by $\mu_\Phi(f|C)$ the system of all $g \in C$ fulfilling

$$\int \Phi(|f - g|) \, d\mu = \inf_{h \in C} \int \Phi(|f - h|) \, d\mu.$$

The elements of $\mu_\Phi(f|C)$ are called best Φ-approximants of f, given C. The concept of best Φ-approximants, given C, covers and unifies many important concepts of probability theory, e.g. the concepts in [1], [2], [6]; for more details see [4]. It is known that $\mu_\Phi(f|C) \neq \emptyset$ if C is a lattice (i.e. $f, g \in C$ implies $f \land g, f \lor g \in C$) which is Φ-closed (i.e. $f_n \in C, f \in L_\Phi$ and $f_n \uparrow f$ or $f_n \downarrow f$ imply $f \in C$); see Theorem 4 of [4]. In general, $\mu_\Phi(f|C)$ contains a lot of different elements; for instance if $\Phi(x) = x$ or if C is not convex. This creates problems for proving limit theorems for best Φ-approximants. In special cases—i.e. for $\Phi(x) = x^p$, $p > 1$, and special types of C—limit results for best Φ-approximants of f, given C, are easier to obtain for varying f than for varying C; but in all these cases best approximants are unique. In the general context, however, the case of varying f is more complex. There exist limit theorems for best Φ-approximants of martingale type (see Theorem 21 and Theorem 22 of [4])—i.e. limit theorems for $g_n \in \mu_\Phi(f|C_n)$ with varying C_n—but there exist no continuity theorems for best Φ-approximants—i.e. limit theorems for $g_n \in \mu_\Phi(f_n|C)$ with varying f_n. It is the aim of this paper to close this gap. We prove a limit theorem for best Φ-approximants $g_n \in \mu_\Phi(f_n|C_n)$ where as well the functions f_n as the Φ-closed lattices C_n may vary with $n \in \mathbb{N}$. We apply this result to obtain continuity of best approximants in the Orlicz-space norm of L_Φ.

Received by the editors October 24, 1980.

1980 Mathematics Subject Classification. Primary 46E30; Secondary 41A50.

Key words and phrases. Best approximants, σ-lattices, conditional expectations, characterization.

© 1981 American Mathematical Society

0002-9939/81/0000-0554/$02.75
2. The results. Throughout the following let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ be a convex function with $\Phi(0) = 0$ and $\Phi \equiv 0$. Then Φ is a continuous function with $\lim_{t \to \infty} \Phi(t) = \infty$. If $C_n \subseteq L_\Phi$, $n \in \mathbb{N} \cup \{\infty\}$, we write $C_n \downarrow C_\infty$ if $C_n \subseteq C_{n+1}$, $n \in \mathbb{N}$, and $C_\infty = \bigcap_{n \in \mathbb{N}} C_n$. If C_n are Φ-closed lattices we write $C_n \uparrow C_\infty$ if $C_n \subseteq C_{n+1}$ and C_∞ is the smallest Φ-closed set containing $\bigcup_{n \in \mathbb{N}} C_n$; then C_∞ is a lattice, too (see [4, p. 229]).

1. Theorem. Assume that $L_\Phi = L_\Phi^\infty$. Let $C_n \subseteq L_\Phi$, $n \in \mathbb{N}$, be Φ-closed lattices with $C_n \downarrow C_\infty$ or $C_n \uparrow C_\infty$ and $f_n \in L_\Phi$, $n \in \mathbb{N}$, with $f_n \to f \mu$-a.e. and $\sup_{n \in \mathbb{N}} |f_n| \in L_\Phi$. Then for all $g_n \in \mu_\Phi(f_n|C_n)$, $n \in \mathbb{N}$,

(i) $\lim_{n \to \infty} g_n \in \mu_\Phi(f|C_\infty)$,
(ii) $\overline{\lim}_{n \to \infty} g_n \in \mu_\Phi(f|C_\infty)$.

Proof. Let $C_n \uparrow C_\infty$. We prove that for each $g \in \mu_\Phi(f|C_\infty)$

(1) $g \land \lim_{n \to \infty} g_n \in \mu_\Phi(f|C_\infty)$, $g \lor \overline{\lim}_{n \to \infty} g_n \in \mu_\Phi(f|C_\infty)$.

As

$$\lim_{n \to \infty} g_n = \left(g \lor \overline{\lim}_{n \to \infty} g_n \right) \land \lim_{n \to \infty} g_n$$

and

$$\overline{\lim}_{n \to \infty} g_n = \left(g \land \lim_{n \to \infty} g_n \right) \lor \overline{\lim}_{n \to \infty} g_n,$$

(1) implies (i).

Applying Lemma 3 to $C_k \supseteq \cdots \supseteq C_n \supseteq C_\infty$ we obtain for $n > k$

$$\int \Phi(|f_k \land \cdots \land f_n \land f - g_k \land \cdots \land g_n \land g|) \, d\mu$$

(2) $< \int \Phi(|f_k \land \cdots \land f_n \land f - g|) \, d\mu$

and

$$\int \Phi(|f_k \lor \cdots \lor f_n \lor f - g_k \lor \cdots \lor g_n \lor g|) \, d\mu$$

(3) $< \int \Phi(|f_k \lor \cdots \lor f_n \lor f - g|) \, d\mu$.

From (2) we obtain for each k with $n \to \infty$ according to the Lemma of Fatou that

$$\int \Phi\left(|f \land \bigwedge_{n \geq k} f_n - g \land \bigwedge_{n \geq k} g_n|\right) \, d\mu$$

(4) $< \lim_{n \to \infty} \int \Phi(|f_k \land \cdots \land f_n \land f - g|) \, d\mu.$

Since $\sup_{n \in \mathbb{N}} |f_n| \in L_\Phi$ by assumption, (4) implies by the Theorem of Lebesgue that for each $k \in \mathbb{N}$

$$\int \Phi\left(|f \land \bigwedge_{n \geq k} f_n - g \land \bigwedge_{n \geq k} g_n|\right) \, d\mu < \int \Phi\left(|f \land \bigwedge_{n \geq k} f_n - g|\right) \, d\mu < \infty.$$
As \(f_n \to f \), \(\sup_{n \in \mathbb{N}} |f_n| \in L_\Phi \) we obtain from (5) with \(k \to \infty \) using on the left side the Lemma of Fatou and on the right side the Theorem of Lebesgue that

\[
\int \Phi\left(|f - g \wedge \lim_{n \in \mathbb{N}} g_n| \right) \, d\mu < \int \Phi(|f - g|) \, d\mu < \infty.
\]

From (5) we obtain that \(g \wedge \bigwedge_{n \geq k} g_n \in L_\Phi \). As \(g \wedge \bigwedge_{n \geq k} g_n < \bigwedge_{n \geq k} g_n < g_k \) this implies

\[
\bigwedge_{n \geq k} g_n \in L_\Phi.
\]

In the same way as (6) and (7) we obtain

\[
\int \Phi\left(|f - g \vee \lim_{n \in \mathbb{N}} g_n| \right) \, d\mu < \int \Phi(|f - g|) \, d\mu < \infty
\]

and

\[
\bigvee_{n \geq k} g_n \in L_\Phi.
\]

From (7) and (7)* applied to \(k = 1 \) we obtain (ii). As \(C_n \) are \(\Phi \)-closed lattices we obtain with (7) that \(\bigwedge_{n \geq j} g_n \in C_k \) for \(j > k \). As \(\lim_{n \in \mathbb{N}} g_n \in L_\Phi \) by (ii), this implies \(\lim_{n \in \mathbb{N}} g_n \in C_k \) for each \(k \in \mathbb{N} \) and hence \(\lim_{n \in \mathbb{N}} g_n \in C_\infty \). Similarly \(\lim_{n \in \mathbb{N}} g_n \in C_\infty \). Now (6), (6)* and \(g \in C_\infty \) imply (1). This finishes the proof for the decreasing case.

Now let \(C_n \uparrow C_\infty \). Applying Lemma 3 with \(C_n \supset C_{n-1} \supset \cdots \supset C_k \), \(k < n \), we obtain for \(k < n \)

\[
\int \Phi(|f_k \wedge \cdots \wedge f_n - g_k \wedge \cdots \wedge g_n|) \, d\mu < \int \Phi(|f_k \wedge \cdots \wedge f_n - g_k|) \, d\mu.
\]

Proceeding now as in the decreasing case, i.e. letting at first \(n \to \infty \) and then \(k \to \infty \) and using on the left sides the Lemma of Fatou and on the right sides the Theorem of Lebesgue we obtain

\[
\bigwedge_{n \geq k} g_n \in L_\Phi, \quad k \in \mathbb{N},
\]

and

\[
\int \Phi\left(|f - \lim_{n \in \mathbb{N}} g_n| \right) \, d\mu < \lim_{k \in \mathbb{N}} \int \Phi\left(\bigwedge_{n \geq k} f_n - g_k \right) \, d\mu.
\]

In the same way we obtain

\[
\bigvee_{n \geq k} g_n \in L_\Phi, \quad k \in \mathbb{N},
\]

and

\[
\int \Phi\left(|f - \lim_{n \in \mathbb{N}} g_n| \right) \, d\mu < \lim_{k \in \mathbb{N}} \int \Phi\left(\bigvee_{n \geq k} f_n - g_k \right) \, d\mu < \infty.
\]

Relations (8) and (8*) directly imply

\[
\sup_{n \in \mathbb{N}} |g_n| \in L_\Phi \quad \text{and} \quad \lim_{n \in \mathbb{N}} g_n, \quad \lim_{n \in \mathbb{N}} g_n \in C_\infty.
\]
Now apply Lemma 4 to \(h_k = |f_k - g_k| \) and \(r_k := |\cap_{n > k} f_n - f_k| \). Since \(\sup_{k \in \mathbb{N}} g_k \in L_\Phi \) by (10), \(\sup_{k \in \mathbb{N}} |f_k| \in L_\Phi \) and \(f_k \rightarrow f \) \(\mu \)-a.e. by assumption we have \(\sup_{k \in \mathbb{N}} h_k, \sup_{k \in \mathbb{N}} r_k \in L_\Phi \) and \(r_k \rightarrow 0 \) \(\mu \)-a.e., i.e. the assumptions of Lemma 4 are fulfilled. Hence we obtain

\[
\lim_{k \in \mathbb{N}} \int \Phi(h_k + r_k) \, d\mu = \lim_{k \in \mathbb{N}} \int \Phi(h_k) \, d\mu.
\]

Since

\[
\Phi \left(\left| \cap_{n > k} f_n - g_k \right| \right) < \Phi \left(\left| f_k - g_k \right| + \left| \cap_{n > k} f_n - f_k \right| \right) = \Phi(h_k + r_k),
\]

(9) and (11) imply

\[
\int \Phi \left(\left| f - \lim_{n \in \mathbb{N}} g_n \right| \right) \, d\mu < \lim_{k \in \mathbb{N}} \int \Phi \left(|f_k - g_k| \right) \, d\mu.
\]

According to (12) and (10) we get \(\lim_{n \in \mathbb{N}} g_n \in \mu_\Phi(f|C_\infty) \) if we show that for all \(g \in C_\infty \)

\[
\lim_{k \in \mathbb{N}} \int \Phi(|f_k - g_k|) \, d\mu < \int \Phi(|f - g|) \, d\mu.
\]

Let \(\hat{C} \) be the set of all \(g \in L_\Phi \) fulfilling (13). Since \(g_k \in \mu_\Phi(f_k|C_k), \Delta_k \uparrow, f_k \rightarrow f \) \(\mu \)-a.e. and \(\sup_{n \in \mathbb{N}} |f_n| \in L_\Phi \) it is easy to see that \(\hat{C} \) is \(\Phi \)-closed with \(\cup_{n \in \mathbb{N}} C_n \subset \hat{C} \). Hence \(C_\infty \subset \hat{C} \), i.e. (13) holds for all \(g \in \hat{C} \). Thus \(\lim_{n \in \mathbb{N}} g_n \in \mu_\Phi(f|C_\infty) \) is shown; the proof for \(\lim_{n \in \mathbb{N}} g_n \in \mu_\Phi(f|C_\infty) \) runs similarly (by using (9*) instead of (9)).

The martingale results, given in [4], hold for more general functions \(\Phi \) than convex functions, namely for so-called \(\mu \)-functions. We do not know whether also the preceding theorem is true for this more general concept; the proof of Theorem 1 heavily uses the convexity of \(\Phi \). Approximating \(\lim_{n \in \mathbb{N}} g_n \) \(\mu \)-a.e. by \(g_{\tau_n} \) where \(\tau_n \) is a sequence of finite stopping times for \(g_n, n \in \mathbb{N} \), it can be seen that Theorem 1 is true for \(\mu \)-functions in the special case that \(C_n \) is the system of \(\mathcal{B}_\tau \)-measurable functions in \(L_\Phi \), where \(\mathcal{B}_\tau \subset \mathcal{B} \) are \(\sigma \)-fields, and \(\mathcal{B}_\tau \uparrow \mathcal{B}_\infty \) or \(\mathcal{B}_\tau \downarrow \mathcal{B}_\infty \). However, this procedure fails for arbitrary \(\Phi \)-closed lattices \(C_n \).

If \(f \in L_\Phi \) put \(\|f\|_\Phi := \inf\{a > 0: \int \Phi(|f|/a) \, d\mu < 1\} \). Then \(\| \|_\Phi \) is a norm on \(L_\Phi \) and the spaces \((L_\Phi, \| \|_\Phi) \) are Banach-spaces; the well-known Orlicz spaces (see [5, p. 46]). If \(C \subset L_\Phi \) and \(f \in L_\Phi \) we denote by \(\mu_{\Phi} \|f|C\) the set of all best \(\| \|_\Phi \)-approximants of \(f \), given \(C \), i.e. the set of all elements \(g \in C \) with

\[
\|f - g\|_\Phi = \inf\{\|f - h\|_\Phi: h \in C\}.
\]

The concept of best \(\| \|_\Phi \)-approximants and its connection with the concept of best \(\Phi \)-approximants has been investigated in [4]. If \(\Phi \) is strictly convex and if \(L_\Phi = L_\infty \), then for each \(\Phi \)-closed convex lattice \(C \subset L_\Phi \) and each \(f \in L_\Phi \) there exist a unique best \(\Phi \)-approximant and a unique best \(\| \|_\Phi \)-approximant of \(f \), given \(C \) (see Corollary 5 and Corollary 13 of [4]), we denote these unique elements by \(\mu_{\Phi}(f|C) \).
and \(\mu_\|_{\|} (f|C) \), respectively. Hence \(L_\Phi \ni f \to \mu_\Phi (f|C) \in L_\Phi \) and \(L_\Phi \ni f \to \mu_\|_{\|} (f|C) \in L_\Phi \) are operators on \(L_\Phi \) and the following result states the \(\| \|_\Phi \)-continuity of these operators.

2. Corollary. Let \(\Phi \) be strictly convex and assume that \(L_\Phi = L_\Phi^\infty \). Let \(C \subset L_\Phi \) be a \(\Phi \)-closed convex lattice and a cone. Then \(\mu_\Phi (\cdot|C) \) and \(\mu_\|_{\|} (\cdot|C) \) are \(\| \|_\Phi \)-continuous operators on \(L_\Phi \).

Proof. As \(L_\Phi = L_\Phi^\infty \) let us at first remark that

\[
\| h_n \|_\Phi \to 0 \text{ iff } \int \Phi(a|h_n|) \, d\mu \to 0 \text{ for all } a > 0.
\]

Let now \(\| f_n - f_0 \|_\Phi \to n\in\mathbb{N} 0 \) and \(N_1 \subset \mathbb{N} \) be a subsequence. It suffices to prove that there exists a subsequence \(N_2 \subset N_1 \) such that

\[
(1) \quad \| \mu_\Phi (f_n|C) - \mu_\Phi (f_0|C) \|_\Phi \to 0, \quad n \in N_2.
\]

\[
(2) \quad \| \mu_\|_{\|} (f_n|C) - \mu_\|_{\|} (f_0|C) \|_\Phi \to 0.
\]

Since \(\| f_n - f_0 \|_\Phi \to n\in\mathbb{N} 0 \) there exists a subsequence \(N_2 \subset N_1 \) such that

\[
(3) \quad f_n \to f_0 \text{ \mu-a.e.}
\]

and

\[
(4) \quad \sum_{n \in N_2} \| f_n - f_0 \|_\Phi < \infty.
\]

From (5) and \(L_\Phi = L_\Phi^\infty \) we obtain

\[
(5) \quad \sup_{n \in N_2} | f_n | < | f_0 | + \sum_{n \in N_2} | f_n - f_0 | \in L_\Phi.
\]

Now (4), (6) and Theorem 1 imply

\[
(6) \quad \mu_\Phi (f_n|C) \to \mu_\Phi (f_0|C) \text{ \mu-a.e.; } \sup_{n \in N_2} | \mu_\Phi (f_n|C) | \in L_\Phi.
\]

Using (1), \(L_\Phi = L_\Phi^\infty \) and the Theorem of Lebesgue, (7) implies (2). It remains to prove (3). Since \(\| f_n - f_0 \|_\Phi \to 0 \) and \(C \) is \(\| \|_\Phi \)-closed (see Theorem 10 of [4]) it is easy to see that

\[
(8) \quad \delta_n := \| f_n - \mu_\|_{\|} (f_n|C) \|_\Phi \to n\in\mathbb{N} \| f_0 - \mu_\|_{\|} (f_0|C) \|_\Phi =: \delta_0.
\]

Let w.l.g. \(\delta_0 > 0 \); hence w.l.g. \(\delta_n > 0 \) for all \(n \in \mathbb{N} \). According to Corollary 8 of [4] we have, as \(C \) is a cone, that

\[
(9) \quad \mu_\|_{\|} (f_n|C) \mu_\Phi \left(\frac{1}{\delta_n} \right) f_n|C), \quad n \in \mathbb{N} \cup \{0\}.
\]

Since \(f_n \to f_0 \) and \(\delta_n \to \delta_0 \) by (8), we have

\[
\frac{1}{\delta_n} \to f_n \to \delta_0 f_0.
\]
Hence the continuity of $\mu_\Phi(\cdot | C)$ implies
\[
\left\| \mu_\Phi\left(\frac{1}{\delta_n} f_n | C \right) - \mu_\Phi\left(\frac{1}{\delta_0} f_0 | C \right) \right\|_{\Phi^n} \rightarrow 0.
\]
Together with (9) and (8) this yields (3).

For the special case that C is the system of measurable functions with respect to a σ-field the assertion of Corollary 2 follows from Satz 5.10 of [3]. The methods used there are closely related to this special type of C and cannot be transferred to arbitrary Φ-closed convex lattices.

The following lemmas are the main tools for the proof of Theorem 1.

3. Lemma. Assume that $L_\Phi = L_\Phi^\infty$. Let $C_i \subset L_\Phi$, $i = 1, \ldots, n$, be Φ-closed lattices with $C_1 \supseteq C_2 \supseteq \cdots \supseteq C_n$. If $f_i \in L_\Phi$ and $g_i \in \mu_\Phi(f_i | C_i)$, $i = 1, \ldots, n$ then

(i) $\int \Phi(\{f_i \wedge \cdots \wedge f_n - g_i \wedge \cdots \wedge g_n\}) \, d\mu < \int \Phi(\{f_i \wedge \cdots \wedge f_n - g_{i+1} \wedge \cdots \wedge g_n\}) \, d\mu$,

(ii) $\int \Phi(\{f_i \vee \cdots \vee f_n - g_i \vee \cdots \vee g_n\}) \, d\mu < \int \Phi(\{f_i \vee \cdots \vee f_n - g_{i+1} \vee \cdots \vee g_n\}) \, d\mu$.

Proof. To show (i) it suffices to prove that for $j < n$
\[
\int \Phi(\{f_1 \wedge \cdots \wedge f_n - g_j \wedge \cdots \wedge g_n\}) \, d\mu < \int \Phi(\{f_1 \wedge \cdots \wedge f_n - g_{j+1} \wedge \cdots \wedge g_n\}) \, d\mu.
\]
As Φ is convex, Lemma 20 of [4] implies
\[
\Phi(\{f_1 \wedge \cdots \wedge f_n - g_j \wedge (g_{j+1} \wedge \cdots \wedge g_n)\})
\leq \Phi(\{f_j - g_j \wedge (g_{j+1} \wedge \cdots \wedge g_n)\}) + \Phi(\{f_j - g_j\}).
\]
Since C_j is a lattice and $g_i \in C_i \subset C_j$ for $i > j$ we have $g_j \vee (g_{j+1} \wedge \cdots \wedge g_n) \in C_j$. As $g_j \in \mu_\Phi(f_j | C_j)$ we obtain
\[
\int \Phi(\{f_j - g_j\}) \, d\mu < \int \Phi(\{f_j - g_j \vee (g_{j+1} \wedge \cdots \wedge g_n)\}) \, d\mu.
\]
Using (3) integration of (2) yields (1). This proves (i); the proof for (ii) runs by interchanging \vee and \wedge.

4. Lemma. Assume that $L_\Phi = L_\Phi^\infty$. Let $0 < h_k$, $r_k \in L_\Phi$ and assume that $\sup_{k \in \mathbb{N}} h_k$, $\sup_{k \in \mathbb{N}} r_k \in L_\Phi$ and $r_k \to 0 \mu$-a.e. Then
\[
\int \Phi(h_k + r_k) \, d\mu - \int \Phi(h_k) \, d\mu \rightarrow 0.
\]
Proof. Let Φ'_+ be the right derivative of Φ. Then Φ'_+ is nondecreasing and $\Phi(x) = \int_0^x \Phi'_+(t) \, dt$ (see e.g. [5]). Hence for all $k \in \mathbb{N}$
\[
(*) \quad \Phi(h_k + r_k) - \Phi(h_k) = \int_{h_k}^{h_k + r_k} \Phi'_+(t) \, dt < r_k \Phi'_+(h_k + r_k) < r \Phi'_+(h + r)
\]
with $r := \sup_{k \in \mathbb{N}} r_k \in L_\Phi$ and $h := \sup_{k \in \mathbb{N}} h_k \in L_\Phi$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
By the Theorem of Lebesgue (*) directly implies the assertion if we show $r\Phi'_+(h + r) \in L_1$. As $0 \leq x\Phi'_+(x) < \int_0^x \Phi'_+(t) \, dt \leq \Phi(2x)$ and $L_\Phi = L_\Phi^\infty$, we have $g\Phi'_+(g) \in L_1$ if $0 \leq g \in L_\Phi$. Applying this to $g = h + r \in L_\Phi$ we obtain $r\Phi'_+(h + r) \in L_1$.

REFERENCES