CONVERGENCE OF BEST BEST L_{∞}-APPROXIMATIONS

ABDALLAH M. AL-RASHED AND RICHARD B. DARST

ABSTRACT. Let $(\Omega, \mathcal{A}, \mu)$ be a probability space and let $(\mathcal{B}_i)_{i=1}^{\infty}$ be an increasing sequence of subsigma algebras of \mathcal{A}. Let $A = L_\infty(\Omega, \mathcal{A}, \mu)$, let $B_i = L_\infty(\Omega, \mathcal{B}_i, \mu)$, $i > 1$, and let $f \in A$. Let f_i denote the best best L_∞-approximation to f by elements of B_i. It is shown that $\lim_{i} f_i(x)$ exists a.e.

We begin with a brief introduction in which we present notation and terminology, a related result [1] for $1 < p < \infty$, and some results from [2] that will be used to establish a.e. convergence of the sequence $\{f_i\}$.

Let \mathcal{B}_∞ denote the subsigma algebra generated by the algebra $\bigcup_i \mathcal{B}_i$. For $1 < p < \infty$, $1 < i < \infty$ and $g \in L_p(\Omega, \mathcal{A}, \mu)$, let $g_{i,p}$ denote the best L_p-approximation to g by elements of $L_p(\Omega, \mathcal{B}_i, \mu)$; T. Ando and I. Amemiya [1] showed that $\lim_{i} g_{i,p} = g$ a.e. and in L_p. It is shown in [2] that if $g \in A$, then for $1 < i < \infty$, $\lim_{i} g_{i,p}$ exists a.e. and is the best L_∞-approximation, $g_{i,\infty}$, to g by \mathcal{B}_i-measurable functions. To simplify the notation, we let f be a fixed element of A and, without loss of generality, we suppose that $0 < f < 1$; furthermore, we denote $f_{i,\infty}$ by f_i. Our proof of the fact that the sequence $\{f_i\}$ converges a.e. uses some technical results from [2] that we introduce next. To simplify the notation during this introduction, suppress i from B_i: \mathcal{B} is a subsigma algebra of \mathcal{A} and $B = L_\infty(\Omega, \mathcal{B}, \mu)$.

Let \mathcal{P} denote the set of denumerable partitions of Ω by elements of \mathcal{B}.

For $E \in \mathcal{A}$, let $O(E)$ denote the essential oscillation of f on E: $O(E) = O(f, E) = \text{essup}(f, E) - \text{essinf}(f, E)$, where $\text{essup} (f, E) = \text{essinf}(f, E) = 0$ if $\mu(E) = 0$ and for $\mu(E) > 0$

\[u(E) = \text{essup}(f, E) = \inf\{\lambda; \mu(\{x \in E; f(x) > \lambda\}) = 0\} \]

and

\[l(E) = \text{essinf}(f, E) = \sup\{\lambda; \mu(\{x \in E; f(x) < \lambda\}) = 0\}. \]

Let $d(g, B)$ denote the distance from an element g of A to the subspace B of A.

Next we recall two lemmas from [2]. Lemma 1 shows that \mathcal{P} can be used to estimate $d(f, B)$. Lemma 2 asserts that the flexibility afforded by \mathcal{P} permits us to replace an inf by a min. The partitions corresponding to each min provide an equivalence class of elements of \mathcal{B}. These equivalence classes comprise a monotone family parameterized by the positive reals.

Received by the editors January 11, 1981.

1980 Mathematics Subject Classification. Primary 28A20, 41A50, 46E30.

Key words and phrases. Best approximation, L_∞.

© 1981 American Mathematical Society

0002-9939/81/0000-0555/$01.75

690

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 1. \(d = d(f, B) = (1/2) \inf_{E \in \mathcal{P}} \sup \{ O(E); E \in \pi, \mu(E) > 0 \} \).

Lemma 2. For \(h > 0 \) and \(\pi \in \mathcal{P} \), let \(\delta(h, \pi) = \{ \Sigma \mu(E); E \in \pi, O(E) > h \} \) and let \(\delta_h = \inf \{ \delta(h, \pi); \pi \in \mathcal{P} \} \). Then there exists \(\pi \) such that \(\delta_h = \delta(h, \pi) = \mu(E^h) \), where \(E^h = \bigcup \{ E; E \in \pi, O(E) > h \} \).

Lemmas 1 and 2 assure (i) \(\delta_h = 0 \) if \(h > 2d \) and (ii) if \(h < 2d \), then there exists \(\pi \) such that \(\delta(h, \pi) = \delta_h > 0 \). Notice also that if \(\delta(h, \pi) = \delta_h, E \in \mathcal{P}, E \in E^h \) and \(\mu(E) > 0 \), then \(O(E) > h \); thus, \(E^h \) is uniquely determined up to a set of measure zero by the equation \(\delta(h, \pi) = \delta_h \), so we can denote it by \(E_h \).

Now observe that if \(h_1 < h_2 \), then \(\mu(E_{h_1} - E_{h_2}) = 0 \).

Let \(m(E) = (1/2)(l(E) + u(E)), E \in \mathcal{P}, \mu(E) > 0 \).

The proof of the fourth lemma in [2] implies a lemma that we record for future use.

Lemma 3. Let \(h > 2\gamma > 0 \), let \(E(h, \gamma) = E_h - E_{h+\gamma} = \{ \bigcup_j F_j; F_j \in \mathcal{P}, 0 < \mu(F_j), h < O(F_j) < h + \gamma \} \), and let \(\hat{f} \) denote the best best \(L_\infty \) approximation to \(f \) by elements of \(B \). Then \(\mu(\{ x \in F_j; |\hat{f}(x) - m(F_j)| > \gamma/2 \}) = 0 \); for almost all points \(x \in F_j, |\hat{f}(x) - m(F_j)| < \gamma/2 \).

Now we are ready to show that \(\{ f_i \} \) converges a.e. To this end, let \(0 < \epsilon < 1 \). Let \(\gamma > 0 \) with \(4\gamma < \epsilon \) and let \(M \) be the smallest positive integer for which \(\epsilon + M\gamma > 1 \). Reintroduce the index \(i \) to the notation (e.g. for \(\mathcal{P}_i, E_h \) becomes \(E_{ih} \)). Notice that \(E_{ih} \supset E_{j,h}, i < j, h > 0 \). For \(h > 0 \), let \(E_h = \bigcap_i E_{ih} \) and let \(D_{ih} = E_{ih} - E_h \). Let \(\eta > 0 \) satisfy the inequality \(2\eta(M + 1) < \epsilon \), and let \(n \) be a positive integer such that \(\mu(D_{n+k\eta}) < \eta, k = 0, 1, \ldots, M \). Let \(D_n = \bigcup_{k=0}^M D_{n+k\eta} \), and let \(G_n = E_{nx} - D_n \). Then \(\{ \Omega - E_{nx}, G_n, D_n \} \) is a partition of \(\Omega \). Lemma 1 and Theorem 2 of [2] imply that \(|f_i - f| < \epsilon/2 \) on \((\Omega - E_{nx}) \cup (\Omega - E_{n+k\eta}) \), \(i > n \). Notice that \(\mu(D_n) < \epsilon \). If we show that, for \(i > n, |f_i - f_n| < \epsilon/2 \) on \(G_n \), then we will have shown that for each \(\epsilon > 0 \) there is a set \(D = D_n \) and a positive integer \(n \) such that \(\mu(D) < \epsilon \) and \(|f_i(x) - f_i(x)| < \epsilon, i, j > n, x \notin D \); since this latter situation is equivalent to a.e. convergence of the sequence \(\{ f_i \} \) we will be done. So, let \(S_{i,k} = (E_{ix+k\eta} - E_{ix+(k+1)\eta}) \). For \(n < j < i, (S_{j,k} - S_{i,k}) \subset (E_{nx+k\eta} - E_{x+k\eta}) \) because \(E_{j,k} \supset E_{i,k}, h > 0 \). Now observe that

\[
E_{nx} = \bigcup_{k=0}^M S_{n,k} = G_n, \cup H_n, \ni.
\]

where \(G_n = \bigcup_{k=0}^M (S_{n,k} - S_{i,k}) \subset D_n \) and \(H_n = \bigcup_{k=0}^M (S_{n,k} \cap S_{i,k}) \subset G_n \). Since \(H_n \supset G_n \), it suffices to show that \(|f_n - f_i| < \epsilon/2 \) on \(H_n, i > n \), as follows. Fix \(k \) to simplify the notation and let \(h = \epsilon + k\gamma \). Then

\[
S_{n,k} = \bigcup_l \{ F_{n,l}; \mu(F_{n,l}) > 0, F_{n,l} \in \mathcal{P}_n, h < O(F_{n,l}) < h + \gamma \}.
\]

and

\[
S_{i,k} = \bigcup_m \{ F_{i,m}; \mu(F_{i,m}) > 0, F_{i,m} \in \mathcal{P}_m, h < O(F_{i,m}) < h + \gamma \}.
\]
So $S_{n,k} \cap S_{i,k} = \bigcup_{i,m}(F_{n,i} \cap F_{i,m})$. Fix i, l, m and let H denote $F_{n,i} \cap F_{i,m}$. Observe that $H \in \mathcal{F}_l$. Suppose $\mu(H) > 0$; then $h < O(H) < \max\{O(F_{n,i}), O(F_{i,m})\} < h + \gamma$ because $H \subseteq E_{i,h}$. A computation verifies that $|m(F_{n,i}) - m(F_{i,m})| < \gamma/2$. Finally we apply Lemma 3 and obtain $|f_n(x) - f_l(x)| < |f_n(x) - m(F_{n,i})| + |m(F_{n,i}) - m(F_{i,m})| + |m(F_{i,m}) - f_l(x)| < 2\gamma < \epsilon/2$ for $x \in H$. Thus, the following theorem is established.

Theorem. Let $f \in A$. Then the sequence $\{f_i\}$ of best best L_∞-approximations to f is bounded by $\|f\|_\infty$ and converges a.e.

We conclude with an example to illustrate the fact that $\{f_n\}$ need not converge to f_∞.

Example. Let $\Omega = [0, 1)$, \mathcal{B} be the Borel sets in Ω, μ denote Lebesgue measure, and let \mathcal{B}_n be generated by $\{(i-1)/2^n, i/2^n); 1 \leq i \leq 2^n\}$. Let E be a countable union of closed subsets of Ω such that if $0 < u < v < 1$, then both E and $\Omega - E$ intersect (u, v) in a set of positive measure (cf. [3, p. 59]). Let f be the indicator function I_E of E (i.e., $f(x) = 1$ if $x \in E$ and $f(x) = 0$ if $x \in \Omega - E$). Then $f = f_\infty$; but $f_n \equiv 1/2$, $n = 1, 2, \ldots$.

References

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523

(Current address of R. B. Darst)

Current address (A. M. Al-Rashed): Department of Mathematics, College of Science, Riyadh University, Riyadh, Saudi Arabia