THE DISTRIBUTION FUNCTION IN THE MORREY SPACE

JOSEFINA ALVAREZ ALONSO

Abstract. For $1 < p < \infty$, we consider p-integrable functions on a finite cube Q_0 in \mathbb{R}^n, satisfying

$$\left(\frac{1}{|Q|} \int_{Q} |f(x) - f_Q|^p \, dx \right)^{1/p} < C \varphi(|Q|)$$

for every parallel subcube Q of Q_0, where $|Q|$ denotes the volume of Q, f_Q is the mean value of f over Q and $\varphi(t)$ is a nonnegative function defined in $(0, \infty)$, such that $\varphi(t)$ is nonincreasing near zero, $\varphi(t) \to \infty$ as $t \to 0$, and $\varphi''(t)$ is nondecreasing near zero. The constant C does not depend on Q. Let g be a nonnegative p-integrable function $g: (0, 1) \to \mathbb{R}$ such that g is nonincreasing and $g(t) \to \infty$ as $t \to 0$. We prove here that there exist a cube Q_0 and a function f satisfying condition (1) for every parallel subcube Q of Q_0, such that $\delta_f(\lambda) > C_1 \delta_g(\lambda)$ for $\lambda > \lambda_0$, $C_1 > 0$, where $\delta(\lambda)$ denotes the distribution function.

John and Nirenberg have introduced in [1] the functions of bounded mean oscillation. An integrable function f on a finite cube Q_0 in \mathbb{R}^n is called a BMO function if there exists a constant $C > 0$ such that

$$\frac{1}{|Q|} \int_{Q} |f(x) - f_Q| \, dx \leq C$$

for every parallel subcube Q of Q_0, where $|Q|$ denotes the volume of Q and f_Q is the mean value of f over Q.

These authors have shown that the distribution function of a function of bounded mean oscillation decreases exponentially. More exactly, there exist constants $C, \alpha > 0$ such that

$$\delta_{f-f_Q}(\lambda) = \text{meas}\{x \in Q_0 : |f(x) - f_Q| > \lambda\} \leq Ce^{-\alpha \lambda} |Q_0| \quad \text{for every } \lambda > 0.$$

This implies that the BMO functions satisfy additional conditions. Actually, they belong to $L^p(Q_0)$ for all $p < \infty$ and they satisfy

$$\left(\frac{1}{|Q|} \int_{Q} |f(x) - f_Q|^p \, dx \right)^{1/p} \leq C.$$
Now, we are led to consider more general spaces, for instance, those p-integrable functions f on Q_0 satisfying

\[\left(\frac{1}{|Q|} \int_Q |f(x) - f_Q|^p \, dx \right)^{1/p} < C|Q|^{-\alpha} \quad \text{for some } 0 < \alpha < 1/p. \]

It would be interesting to obtain some estimate for the distribution function in this space. However, it does not seem to be possible. Actually, we show this in a more general space.

In fact, let $\varphi(t)$ be a nonnegative function defined in $(0, \infty)$ such that $\varphi(t)$ does not increase near zero, $\varphi(t) \to \infty$ as $t \to 0$, and $t \varphi^p(t)$ does not decrease near zero. We say that a function f that is p-integrable over a cube Q_0 in \mathbb{R}^n belongs to the space $M^p_\varphi(Q_0)$ if it satisfies $\left(|Q|^{-1} \int_Q |f(x) - f_Q|^p \, dx \right)^{1/p} < C\varphi(|Q|)$ for every parallel subcube Q of Q_0.

When $\varphi(t) = t^{-\alpha}$, $0 < \alpha < 1/p$, we get the Morrey space, that is the functions satisfying (2). Now, we prove the following result.

Proposition. Let $g: (0, 1) \to \mathbb{R}$ be a nonnegative, nonincreasing p-integrable function such that $g(t) \to \infty$ as $t \to 0$. Then, there exist a cube Q_0, a function $f \in M^p_\varphi(Q_0)$ and two constants $C, \lambda_0 > 0$ such that

\[\delta_f(\lambda) > C_1 \delta_g(\lambda) \quad \text{for } \lambda > \lambda_0. \]

Proof. First, we prove the assertion in one variable. The general case will follow from this one.

According to the hypothesis, there exists $a < 1$ such that $\varphi(t)$ does not increase for $t < a$, $t \varphi^p(t)$ does not decrease there, and $\varphi(a) > 0$. We can also suppose that $\varphi(a) = 1$, so we get $\varphi(t) > 1$ for $t < a$. We suppose also that $\int_0^1 g(t)^p \, dt < a/4^p$. On the other hand, we complete the definition of the function g in such a way that it remains left continuous.

Let $h > 2$ be the first natural number such that $g(t) < 2^{h-1}$, for some t. For each $k > h + 1$, we consider the interval $I_k = (x_k, x_{k-1})$, such that $2^{k-2} < g(t) < 2^{k-1}$ in I_k.

We assert that the sequence $\{x_k\}$ converges to zero. In fact, since it is decreasing, it has a limit $L > 0$. L must be zero because, by construction, we have $g(x_k) > 2^{k-2}$, $k > h + 1$. Furthermore, the length of the intervals I_k decreases as a geometric progression. In fact,

\[|I_k|^{p(k-2)} < \int_{I_k} g(t)^p \, dt \leq \frac{a}{4^p}, \]

so that $|I_k| < a/2^{pk}$ for $k > h + 1$.

Now, we define a step function $m(t)$ as

\[m(t) = 2^{k-1} \text{ in } I_k, \text{ for } k > h + 1. \]

Clearly, $\delta_m(\lambda) > \delta_g(\lambda)$ for $\lambda > 2^{h-1}$. Now, we will replace each interval I_k by another one, $J_k = (y_k, y_{k-1})$, of length $|J_k| = 2^{pk}|I_k| = 2^p \int_{I_k} m(t)^p \, dt$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We assert that \(\sum_{k \geq h+1} |J_k| < \infty \). In fact,

\[
\sum_{k \geq h+1} |J_k| = \sum_{k \geq h+1} 2^{nk} |I_k| = 4^p \sum_{k \geq h+1} 2^{p(k-2)} |I_k|
\]

\[
< 4^p \sum_{k \geq h+1} \int_{I_k} g(t)^p \, dt \leq 4^p \int_0^1 g(t)^p \, dt < a.
\]

Now, we will define a function \(f(t) \) on the interval \((0, y_h)\) in the following way. We fix one interval \(I_k \) and we divide it into \(n_k \) subintervals of length \(\delta_k = |I_k|/n_k \). The number \(n_k \) will be selected later. Now, let \(\epsilon_k = (|J_k| - |I_k|)/(n_k - 1) \). We divide the interval \(J_k \) into \(2n_k - 1 \) subintervals of length \(\delta_k \) and \(\epsilon_k \) alternatively. We define \(f(t) \) as \(2^{k-1} \) in the intervals of length \(\delta_k \) and zero in the others.

Over each interval \(J_k \) the measure of the set where \(f(t) \) does not vanish is exactly \(|I_k| \). Furthermore, \(f(t) \) coincides with \(m(t) \) on that set. So, both functions have the same distribution function.

Now, we assert that selecting the number \(n_k \) in each interval \(J_k \) in a correct way, we get \(f(t) \in M_p^\varphi((0, y_h)) \). Actually, we will prove that there exists a constant \(C > 0 \) such that

\[
\int_J f(t)^p \, dt \leq C |J| \varphi^p(|J|)
\]

for every subinterval \(J \) of \((0, y_h)\). This will clearly imply that \(f \in M_p^\varphi((0, y_h)) \).
First, let us consider the interval $J = (0, y_{L-1})$, for some L,
\[
\int f(t)^p \, dt = \sum_{k > L} \int f(t)^p \, dt = \sum_{k > L} 2^{p(k-1)}|I_k| = 2^{-p} \sum_{k > L} |J_k| = 2^{-p}|J|.
\]
As was shown above, $\sum_{k > L} |J_k| < a$; thus, $\varphi(|J|) > 1$ or $|J|^{p}(|J|) > |J|$. So, we get
\[
\int f(t)^p \, dt < 2^{-p}|J|^{p}(|J|).
\]
Now, let us consider an interval $J = (y_x, y_{L-1})$. In the same way, we obtain
\[
\int f(t)^p \, dt = \sum_{k} \int f(t)^p \, dt = \sum_{k} 2^{p(k-1)}|I_k| = 2^{-p} \sum_{k} |J_k| = 2^{-p}|J| < 2^{-p}|J|^{p}(|J|).
\]
Now, we will consider an interval J contained in one of the intervals J_k. We will select the number n_k in order to obtain the desired inequality over this interval.

Since we have supposed the index k to be fixed, we will write simply n, δ, ϵ. We first assume that there are j intervals of length δ, which cover the interval J, in the following sense.

\[
\delta
\]

\[
\begin{array}{c}
1 \quad 2 \quad \ldots \quad j
\end{array}
\]

It would be desirable to obtain the inequality
\[
2^{p(k-1)}j\delta \leq (j\delta + (j - 1)\epsilon)\varphi^{p}(j\delta + (j - 1)\epsilon), \quad 1 \leq j \leq n.
\]

Since $\delta = |I_k|/n$, $\epsilon = (|J_k| - |I_k|)/n - 1 = (2^{p} - 1)|I_k|/n - 1$, we can write the above inequality in the form
\[
2^{p(k-1)}j \left|\frac{I_k}{n}\right| \leq \left(j \left|\frac{I_k}{n}\right| + (j - 1)(2^{p} - 1)\left|\frac{I_k}{n - 1}\right|\right)\varphi^{p}\left(j \left|\frac{I_k}{n}\right| + (j - 1)(2^{p} - 1)\left|\frac{I_k}{n - 1}\right|\right)
\]
or,
\[
2^{p(k-1)} \leq \left(1 + \frac{j - 1}{j \left|\frac{I_k}{n - 1}\right|} (2^{p} - 1)\right) \varphi^{p}\left(j \left|\frac{I_k}{n}\right| + (j - 1)(2^{p} - 1)\right).
\]
As we saw above, $|I_k| < a/2^{p}$. Moreover, $(j - 1)/(n - 1) < j/n$. Thus,
\[
|I_k| \left(j \left|\frac{I_k}{n}\right| + j \left|\frac{I_k}{n - 1}\right| (2^{p} - 1)\right) \leq \frac{a}{2^{p}} \left(j \left|\frac{I_k}{n}\right| + j \left|\frac{I_k}{n - 1}\right| (2^{p} - 1)\right) = a \frac{j}{n} < a.
\]
Since we have supposed that φ is a nonincreasing function for $t < a$, we obtain

$$\varphi\left(|I_k|\left(\frac{j}{n} + \frac{j - 1}{n - 1}(2^{pk} - 1)\right)\right) > \varphi\left(a\frac{j}{n}\right) > \varphi(a) = 1.$$

Thus, it suffices to find a natural number n so that

$$2^{p(k-1)} \leq \left(1 + \frac{n}{j} \frac{j - 1}{n - 1}(2^{pk} - 1)\right)\varphi^p\left(a\frac{j}{n}\right), \quad 1 \leq j \leq n,$$

for $k > h + 1$ fixed. Since $\varphi(t) \to \infty$ as $t \to 0$, there exists $0 < r(k, p) < a$ such that $aj/n < r$ which implies $2^{p(k-1)} < \varphi^p(aj/n)$. Thus, when $j/n < r/a$, we get the desired inequality.

Now, we suppose $1 \leq n/j < a/r$, and we will select n in such a way that

$$2^{p(k-1)} \leq 1 + \frac{n}{j} \frac{j - 1}{n - 1}(2^{pk} - 1).$$

Since $(j - 1)/j = 1 - 1/j$ increases as j increases, the worst case occurs when $n/j = a/r$; that is,

$$2^{p(k-1)} \leq 1 + \frac{nr/a - 1}{n - 1}(2^{pk} - 1).$$

From this inequality, we deduce that selecting $n > (a/r - \theta)/(1 - \theta)$, where $\theta = (2^{p(k-1)} - 1)/(2^{pk} - 1)$, we obtain the desired inequality for the subinterval J. Now, we suppose that J is contained in one of the intervals of length δ_k, for k fixed.

In this case, it suffices to satisfy the inequality

$$2^{p(k-1)}|J| \leq |J|\varphi^p(|J|),$$

or, $2^{k-1} \leq \varphi(|J|)$.

Since $|J| < \delta_k$, we will have $\varphi(|J|) > \varphi(\delta_k)$; so that, it suffices to obtain $2^{k-1} < \varphi(\delta_k)$. But this is the inequality above, for $j = 1$.

In the same way, we can prove the inequality for a given subinterval J of some interval J_k. We merely have to use that the function $t\varphi^p(t)$ does not decrease for $t < a$.

Finally, let us consider a subinterval J of the interval $(0, y_h)$. We can divide J into at most three intervals. One of them is a union of some intervals J_k, and the others are contained in some other intervals J_k and J_{k-1}. Thus, according to all we have said above, and using again the fact that $t\varphi^p(t)$ is a nondecreasing function, we obtain the inequality. This concludes the one variable case.

In the general case, we argue as follows. Let $f(t)$ be a function in the space $M^p_\varphi((0, y_h))$, satisfying the desired hypothesis. Let $Q_0 = \{(t_1, \ldots, t_n)|0 < t_j < y_h, j = 1, \ldots, n\}$. We define the function $F(t_1, \ldots, t_n)$ as

$$F(t_1, \ldots, t_n) = f(t_1).$$

We assert that $F \in M^p_\varphi(Q_0)$.

In fact, let Q be a parallel subcube of Q_0; we can write $Q = S_1 \times \cdots \times S_n$, where S_j are subintervals of the same length of $(0, y_h)$. Thus,

$$\int_Q F(t_1, \ldots, t_n)^p \, dt_1 \cdots dt_n = |S_2| \cdots |S_n| \int_{S_1} f(t_1)^p \, dt_1 < C|Q|\varphi^p(|S_1|).$$
Since \(|S_j| < y_h < a < 1\), we get \(|Q| = |S_1| \cdots |S_n| < |S_1| < a\). So that

\[\varphi(|S_1|) < \varphi(|Q|) \quad \text{or} \quad \varphi^* (|S_1|) < \varphi^* (|Q|). \]

On the other hand, we have also that \(\delta_F (\lambda) = y_h^{-n - \delta} \) for \(\lambda > 0\). This completes the proof.

Remark. In [2], the definition of the Morrey space appears in a slightly different way. Working over cubes, that definition may be stated as follows.

A \(p\)-integrable function \(f\) on a finite cube \(Q_0\) in \(\mathbb{R}^n\) belongs to the Morrey space of order \(\alpha\), \(0 < \alpha < 1/p\), if

\[
\sup_{x \in \overline{Q}_0} \inf_{c \in C} \left[|Q(x)|^{p \alpha - 1} \int_{Q(x) \cap Q_0} |f(y) - c|^p \, dy \right]^{1/p} < \infty
\]

where \(\overline{Q}_0\) means the closure of \(Q_0\) and, given \(x \in \overline{Q}_0\), \(Q(x)\) is a cube centered in \(x\), parallel to \(Q_0\).

Actually, Campanato has shown that it is the same to consider

\[
\sup_{x \in \overline{Q}_0} \left[|Q(x)|^{p \alpha - 1} \int_{Q(x) \cap Q_0} |f(y)|^p \, dy \right]^{1/p} < \infty
\]

(see [3]). From this, we are led to consider those \(p\)-integrable functions on \(Q_0\) such that

\[
\int_{Q(x) \cap Q_0} |f(y)|^p \, dy \leq C |Q(x)|^{p \alpha} \varphi^p(|Q(x)|) \quad \text{for all} \quad x \in \overline{Q}_0, |Q(x)| < |Q_0|.
\]

The function \(F(t_1, \ldots, t_n)\) constructed in the above proposition satisfies this inequality, in fact let \(Q(x) \cap Q_0 = S_1 \times \cdots \times S_n\), where \(S_j\) are subintervals of \((0, y_h)\). Then

\[
\int_{Q(x) \cap Q_0} F(t_1, \ldots, t_n)^p \, dt_1 \cdots dt_n = |S_2| \cdots |S_n| \int_{S_1} f(t_1)^p \, dt_1 < C |Q(x) \cap Q_0| \varphi^p(|S_1|).
\]

Since \(|S_j| < y_h < a < 1\), we have \(a > |S_1| > |S_1| \cdots |S_n| = |Q(x) \cap Q_0|\). The function \(\varphi(t)\) is nonincreasing and the function \(t^p \varphi(t)\) is nondecreasing for \(t < a\), so we get

\[
|Q(x) \cap Q_0| \varphi^p(|S_1|) \leq |Q(x) \cap Q_0| \varphi^p(|Q(x) \cap Q_0|) < |Q(x)| \varphi^p(|Q(x)|).
\]

Actually, we have proved that

\[
\int_{Q(x) \cap Q_0} F(t_1, \ldots, t_n)^p \, dt_1 \cdots dt_n \leq C |Q(x) \cap Q_0|^{p \alpha} |Q(x)|^{p \alpha} \varphi^p(|Q(x)|^{p \alpha}).
\]

This concludes the remark.
ACKNOWLEDGEMENT. We thank Professor A. P. Calderón for his very helpful suggestions.

REFERENCES

Facultad de Ciencias Exactas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones, Buenos Aires, Argentina