Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The image of the Ahlfors function


Author: David Minda
Journal: Proc. Amer. Math. Soc. 83 (1981), 751-756
MSC: Primary 30D50; Secondary 30C55
DOI: https://doi.org/10.1090/S0002-9939-1981-0630049-3
MathSciNet review: 630049
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega $ denote a maximal region on the Riemann sphere for bounded holomorphic functions and $ p \in \Omega $. We present a class of examples to show that the complement in the unit disk of the image of the Ahlfors function for $ \Omega $ and $ p$ can be a fairly general discrete subset of the unit disk.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1-11. MR 0021108 (9:24a)
  • [2] S. D. Fisher, On Schwarz's lemma and inner functions, Trans. Amer. Math. Soc. 138 (1969), 229-240. MR 0240302 (39:1651)
  • [3] -, The moduli of extremal functions, Michigan Math. J. 19 (1972), 179-183. MR 0306506 (46:5632)
  • [4] T. W. Gamelin, Cluster values of bounded analytic functions, Trans. Amer. Math. Soc. 225 (1977), 295-306. MR 0438133 (55:11052)
  • [5] S. Ya. Havinson, Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Amer. Math. Soc. Transl. (2) 43 (1964), 215-266.
  • [6] M. Heins, On the Lindelöf principle, Ann. of Math. 61 (1953), 440-473. MR 0069275 (16:1011g)
  • [7] A. Marden, I. Richards and B. Rodin, Analytic self-mappings of Riemann surfaces, J. Analyse Math. 18 (1967), 197-225. MR 0212182 (35:3057)
  • [8] Ch. Pommerenke, Über die analytische Kapazität, Arch. Math. (Basel) 11 (1960), 270-277. MR 0114924 (22:5740c)
  • [9] E. Roding, Über die Wertannahme der Ahlfors funktion in beliebigen Gebieten, Manuscripta Math. 20 (1977), 133-140. MR 0437740 (55:10663)
  • [10] H. L. Royden, Real analysis, 2nd ed., Macmillan, New York, 1968. MR 0151555 (27:1540)
  • [11] W. Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math. Soc. 78 (1955), 333-342. MR 0067192 (16:685b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D50, 30C55

Retrieve articles in all journals with MSC: 30D50, 30C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0630049-3
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society