Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Selection and representation theorems for $ \sigma $-compact valued multifunctions


Author: S. M. Srivastava
Journal: Proc. Amer. Math. Soc. 83 (1981), 775-780
MSC: Primary 04A15; Secondary 04A05, 54C65, 54H05
DOI: https://doi.org/10.1090/S0002-9939-1981-0630054-7
MathSciNet review: 630054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give two applications of results of Shchegolkov and Saint-Raymond on Borel sets with $ \sigma $-compact sections. First we give a sufficient condition under which a partition of a Polish space into $ \sigma $-compact sets admits a Borel cross-section. Then a representation theorem for $ \sigma $-compact valued multifunctions, expressing them as unions of continuously indexed Borel graphs, is proved.


References [Enhancements On Off] (What's this?)

  • [1] David Blackwell, On a class of probability spaces, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley and Los Angeles, 1956, pp. 1–6. MR 0084882
  • [2] K. Kuratovskiĭ, \cyr Topologiya. Tom 2, Translated from the English by M. Ja. Antonovskiĭ, Izdat. “Mir”, Moscow, 1969 (Russian). MR 0259836
  • [3] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403 (English, with Russian summary). MR 0188994
  • [4] Jean Saint-Raymond, Boréliens à coupes 𝐾_{𝜎}, Bull. Soc. Math. France 104 (1976), no. 4, 389–400. MR 0433418
  • [5] Waclaw Sierpinski, General topology, Mathematical Expositions, No. 7, University of Toronto Press, Toronto, 1952. Translated by C. Cecilia Krieger. MR 0050870
  • [6] Shashi Mohan Srivastava, A representation theorem for closed valued multifunctions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 511–514 (1980) (English, with Russian summary). MR 581542
  • [7] Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optimization 15 (1977), no. 5, 859–903. MR 0486391, https://doi.org/10.1137/0315056
  • [8] Daniel H. Wagner, Survey of measurable selection theorems: an update, Measure theory, Oberwolfach 1979 (Proc. Conf., Oberwolfach, 1979) Lecture Notes in Math., vol. 794, Springer, Berlin-New York, 1980, pp. 176–219. MR 577971

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A15, 04A05, 54C65, 54H05

Retrieve articles in all journals with MSC: 04A15, 04A05, 54C65, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1981-0630054-7
Keywords: Multifunction, partition, selector, cross-section, representation
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society