COUNTABLE INJECTIVE MODULES ARE SIGMA INJECTIVE

CHARLES MEGIBBEN

Abstract. In this note we show that a countable injective module is \(\Sigma \)-injective and consequently a ring \(R \) is left noetherian if the category of left \(R \)-modules has a countable injective cogenerator. Our proof can be modified to establish the corresponding result for quasi-injective modules. We also give an example of a nonnoetherian commutative ring \(R \) such that the category of \(R \)-modules has a countable cogenerator.

We let \(R \) denote an arbitrary ring with identity and \(M \) a unital left \(R \)-module. Recall that \(M \) is injective if and only if for each left ideal \(I \) of \(R \) and each \(R \)-homomorphism \(f : I \to M \) there is a \(y \in M \) such that \(f(r) = ry \) for all \(r \in I \). If \(X \) is a subset of \(M \), then \(l_R(X) \) is the left ideal consisting of those \(r \in R \) such that \(rx = 0 \) for all \(x \in X \). Similarly if \(7 \) is a subset of \(R \), we let \(r_M(7) = \{ x \in M : \text{I}x = 0 \} \). If an arbitrary direct sum of copies of \(M \) is injective, then \(M \) is said to be \(\Sigma \)-injective. Faith [4] has shown that an injective module \(M \) is \(\Sigma \)-injective if and only if the ascending chain condition holds for the left annihilator ideals \(l_R(X) \).

Theorem. A countable injective module is \(\Sigma \)-injective.

Proof. Let \(y_1, y_2, \ldots, y_n, \ldots \) be an enumeration of the elements of the countable injective \(R \)-module \(M \). Assume by way of contradiction that there exists a strictly ascending chain \(I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots \) of left annihilator ideals. If we let \(X_n = r_M(I_n) \), then \(I_n = l_R(X_n) \) and in \(M \) we have the strictly descending chain \(X_1 \supset X_2 \supset \cdots \supset X_n \supset \cdots \). Moreover if \(X = \cap_{n=1}^{\infty} X_n \), then \(X = r_M(7) \) where \(7 = \cup_{n=1}^{\infty} I_n \). We now construct inductively a sequence \(b_1, b_2, \ldots, b_n, \ldots \) in \(I \) and a corresponding sequence of \(R \)-homomorphisms \(f_n : \Sigma_{i=1}^{n} Rb_i \to M \) with \(f_n \subseteq f_{n+1} \) and \(f_n(b_n) \neq b_ny_n \) for all \(n \). For \(n = 1 \), we choose a \(z_1 \in X_1 \) such that \(z_1 - y_1 \notin X \). Since \(X = r_m(7) \) there is some \(b_1 \in I \) such that \(b_1(z_1 - y_1) \neq 0 \) and thus the homomorphism \(f_1 : Rb_1 \to M \) given by right multiplication by \(z_1 \) has the property that \(f_1(b_1) \neq b_1y_1 \). Now suppose we have found \(b_1, \ldots, b_n \) and \(f_1, \ldots, f_n \) with the desired properties. Since \(M \) is injective, there is a \(z_n \) in \(M \) such that \(f_n(r) = rz_n \) for all \(r \) in the domain of \(f_n \). For sufficiently large \(m \), we have \(b_1, \ldots, b_n \) in \(I_m \) and we select \(z_{n+1} \) in \(X_m \) such that \(z_{n+1} + z_n - y_{n+1} \notin X \). Then there will

Received by the editors July 8, 1980.
1980 Mathematics Subject Classification. Primary 16A52; Secondary 16A33.
Key words and phrases. Injective module, \(\Sigma \)-injective, cogenerator, noetherian.

© 1982 American Mathematical Society
0002-9939/82/0000-0002/$01.75

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
exist some \(b_{n+1} \) in \(I \) such that \(b_{n+1}(z_{n+1} + z_n - y_{n+1}) \neq 0 \) and the map \(f_{n+1} : \text{sup}_{i=1}^{\infty} Rb_i \rightarrow M \) given by right multiplication by \(z_{n+1} + z_n \) has the required properties. Finally to obtain the desired contradiction we note that the supremum \(f \) of all the \(f_n \)'s is a homomorphism from the left ideal \(\text{sup}_{i=1}^{\infty} Rb_i \) into \(M \) and therefore there is a \(y \in M \) such that \(f(r) = ry \) for all \(r \) in the domain of \(f \). But this yields \(b_ny = f(b_n) = f_n(b_n) \neq b_ny_n \) for all \(n \), contrary to the fact that \(y \) must equal some \(y_n \).

Remark. The foregoing proof is but a slight modification of the argument given by Lawrence [6] to show that a countable self-injective ring is necessarily quasi-Frobenius. As in that paper, this argument can be generalized to show that if \(M \) is an injective \(R \)-module of regular cardinality \(m \), then any well-ordered properly ascending chain in \(R \) of left annihilators of subsets of \(M \) must have length less than \(m \).

Recall that \(M \) is a cogenerator if each left \(R \)-module can be imbedded as a submodule of a product of sufficiently many copies of \(M \). Since it is easily seen that the left ideal \(I \) is the annihilator of a subset of \(M \) if (and only if) \(R/I \) can be imbedded in a product of copies of \(M \), every left ideal of \(R \) will be the annihilator of a subset of \(M \) provided the latter is a cogenerator. Thus we immediately have the following

Corollary 1. If the category of left \(R \)-modules has a countable injective cogenerator, then \(R \) is left noetherian.

Let \(J \) be the Jacobson radical of \(R \). We call \(R \) semilocal if \(R/J \) is semisimple. For such a ring \(R \) we have only finitely many isomorphically distinct simple left \(R \)-modules \(S_1, \ldots, S_n \) and as an injective cogenerator we have \(E(S_1) \oplus \cdots \oplus E(S_n) \) where \(E(S) \) is the injective envelope of \(S \). Therefore from Corollary 1 we have the following result.

Corollary 2. If \(R \) is semilocal and if the injective envelope of each simple left \(R \)-module is countable, then \(R \) is left noetherian.

Since a nilideal in a left noetherian ring is nilpotent and a semiprimary ring is left artinian if and only if it is left noetherian, we can also make the following observation.

Corollary 3. If \(R \) is a semilocal ring with nil-Jacobson radical and if the injective envelope of each simple left \(R \)-module is countable, then \(R \) is left artinian.

Examples exist showing that "injective cogenerator" cannot be weakened to "cogenerator" in Corollary 1 and "semilocal" is an essential hypothesis in corollary 2. Indeed there exist countable, commutative, nonnoetherian rings \(R \) such that for each maximal ideal \(P \) of \(R \) the localization \(R_P \) is a rank one discrete valuation ring. For such a ring \(R \), \(E(S) \) will be countable for each simple \(R \)-module \(S \) (see [7, Theorem 3.11]) in spite of the fact that \(R \) is not noetherian. Moreover as noted in [2] such an \(R \) can be constructed in which exactly one maximal ideal fails to be finitely generated. Under these circumstances \(R \) can contain only countably many maximal ideals which in turn give rise to countably many isomorphically distinct
simple R-modules S_1, S_2, \ldots, S_n, \ldots. Then the countable module $M = E(S_1) \oplus E(S_2) \oplus \cdots \oplus E(S_n) \oplus \cdots$ is a cogenerator (see, for example, [1, 18.16]), but it is not injective by Corollary 1 since R is not noetherian.

Finally we wish to note that the proof of our theorem can easily be modified to yield the same conclusion for countable quasi-injective modules. Recall that M is quasi-injective if each homomorphism $f: N \to M$ with N a submodule of M extends to an endomorphism of M. It is not difficult to generalize a result of Fuchs [5] in order to show that M is quasi-injective if and only if it satisfies the following condition: If I is a left ideal of R and if $f: I \to M$ is an R-homomorphism with $\ker f \supseteq 1_R(F)$ for some finite subset F of M, then there is a $y \in M$ such that $f(r) = ry$ for all $r \in I$. Then armed with the characterization of Σ-quasi-injective modules given in [3], one can readily carry out the desired proof that countable quasi-injective modules are Σ-quasi-injective.

REFERENCES

Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235