ON ANISOTROPIC SOLVABLE LINEAR ALGEBRAIC GROUPS

S. P. WANG

Abstract. A connected linear algebraic solvable group G defined over a field k is anisotropic over k if G has no k-subgroup splitting over k. A simple criterion for anisotropic solvable groups is presented when k is a local field.

Let G be a connected linear algebraic solvable group defined over a field k. The group G is said to be splitting over k if G has a normal series of k-subgroups such that the factor groups are k-isomorphic either to the additive group G_a or the multiplicative group G_m. We say that G is anisotropic over k if G has no k-subgroups splitting over k. In this note, we give a criterion for anisotropic solvable groups in terms of compactness condition when k is a local field. Our main result is the following theorem.

Theorem M. Let G be a connected linear algebraic solvable group defined over a local field k. Then the following conditions are equivalent.

(i) G is anisotropic over k.

(ii) G is nilpotent, and both the maximal torus T of G and the quotient group G/T are anisotropic over k.

(iii) The group $G(k)$ of k-rational points of G is compact where $G(k)$ is endowed with the locally compact topology from that of k.

When G is a torus, the result is well known. The argument of the next lemma is due to Prasad [2].

Lemma 1. Let T be a torus defined over a local field k. Then $T(k)$ is compact if and only if T is anisotropic over k.

Proof. We know that T is splitting over a finite Galois extension K of k. Clearly, $T(k)$ is a closed subgroup of $T(K)$. From this $T(k)$ is compact if and only if for every $t \in T(k)$ and character χ of T, $\chi(t)$ is of absolute value 1. If $T(k)$ is not compact, then there exists $t \in T(k)$ such that for at least one character χ of T, $\chi(t)$ has absolute value $\neq 1$. This implies that $\Sigma_{\sigma \in \text{Gal}(K/k)} \sigma_{\chi(t)}$ also has absolute value $\neq 1$. Thus the character $\Sigma_{\sigma \in \text{Gal}(K/k)} \sigma_{\chi}$ is nontrivial and defined over k. This shows that T is k-isotropic.

For unipotent groups, we need more lemmas.
Lemma 2. Let k be a local field with characteristic $\text{ch}(k) = p > 0$ and A a subset of k^n. If f is an additive k-morphism of G_a^n such that $f(A)$ is relatively compact in k, then up to a k-automorphism of G_a^n, there exists an integer r with $0 < r < n$ satisfying the following conditions.

(i) f is independent of the first r coordinates.
(ii) Let p_r be the projection of G_a^n onto the last $n - r$ coordinates. The projection $p_r(A)$ of A is relatively compact in k^{n-r}.

Proof. Clearly, we may assume that f is nontrivial. For $1 < i < n$, we define an additive k-morphism f_i of G_a by $f_i = f \circ \iota_i$ where ι_i is the inclusion map of G_a into the ith component. Since f is additive, for $x = (x_1, \ldots, x_n) \in G_a^n$, we have

$$f(x) = f_1(x_1) + \cdots + f_n(x_n).$$

Denote by I the set of indices j with $f_j \neq 0$. After replacing f by $f \circ \alpha$ where α is a k-automorphism of G_a^n, we may assume that the cardinality of I is minimal. Hence it suffices to show that A is relatively compact when $I = \{1, 2, \ldots, n\}$. Suppose that the assertion is false. There exists a sequence $\xi_m = (\xi_1(m), \ldots, \xi_n(m))$ of elements in A such that the norms $||\xi_m||$ ($m = 1, 2, \ldots$) are not bounded. The maps f_i ($i = 1, \ldots, n$) are additive k-morphisms of G_a. Hence we can write

$$f_i(t) = a_{i,0}t + a_{i,1}t^p + \cdots + a_{i,p}t^{p^r},$$

with $a_{i,p} \neq 0$ ($i = 1, \ldots, n$). Here we may assume that the number ΣI_s has been chosen to be minimal. After replacing (ξ_m) by a subsequence and up to a k-automorphism of G_a^n, there is a positive integer $v < n$ satisfying the following conditions.

(1) $\xi_i(m) \rightarrow \infty$, \quad $1 \leq i \leq v$.
(2) For $i, j < v$, the numbers $p^s \ord_k(\xi_i(m)) - p^s \ord_k(\xi_j(m))$ are independent of m.
(2.1) For $i < v, j > v$, the sequence $p^s \ord_k(\xi_i(m)) - p^s \ord_k(\xi_j(m))$ tends to ∞.

Now let $s = \max\{s_1, \ldots, s_p\}$ and assume, as we may, that $s = s_1$. Since $f(A)$ is relatively compact in k, by (1) of (2.1), the sequence $f(\xi_m)\xi_i(m)^{-p^s}$ converges to zero, and by (2) and (3) of (2.1) the sequence b_m,

$$b_m = a_{1,s_1} + a_{2,s_2}(\xi_2(m)\xi_2(m)^{-p^{s_1-1}})^{p^s} + \cdots + a_{v,s_v}(\xi_v(m)\xi_v(m)^{-p^{s_1-1}})^{p^s},$$

converges to zero. It follows readily from (2) of (2.1) that there exist $\xi_2, \ldots, \xi_v \in k$ such that

$$a_{1,s_1} + a_{2,s_2}\xi_2^{p^s} + \cdots + a_{v,s_v}\xi_v^{p^s} = 0.$$

Then we have the identity

$$a_{1,s_1}x_1^{p^s} + \cdots + a_{v,s_v}x_v^{p^s}$$

$$= a_{2,s_2}(x_2 - \xi_2x_1^{p^{s_1-1}})^{p^s} + \cdots + a_{v,s_v}(x_v - \xi_vx_1^{p^{s_1-1}})^{p^s}.$$
Thus if we set $x'_j = x_j - \xi_j x'^{n-1}_j (j = 2, \ldots, \nu)$ and $x'_i = x_i, i \notin \{2, \ldots, \nu\}$, it is easy to verify that in the coordinates (x'_1, \ldots, x'_n)
\[
\deg(f_i(x'_i)) < \deg(f_i(x_i))
\]
and
\[
\deg(f_i(x'_i)) = \deg(f_i(x_i)), \quad (1 < i < n),
\]
where \deg is the degree of a polynomial. Obviously we arrive at a contradiction to our choice of minimality of $\Sigma_{i=1}^{a-1} s_i$. Therefore A has to be relatively compact in k^n and the lemma is proved.

Lemma 3. Let k be as in Lemma 2, A a subset of k^n and f_1, \ldots, f_l additive k-morphisms of G_a^n. Suppose that the images $f_j(a)$ are relatively compact in k ($i = 1, \ldots, l$). Then G_a^n has a decomposition $G_a^n = H \times L$ defined over k such that $H \simeq G_a^{t}$, $L \simeq G_a^{n-t}$ over k. $H \subset \ker(f_j) (j = 1, \ldots, l)$ and $pr_L(A)$ is relatively compact in $L(k)$ where pr_L is the projection map of G_a^n into L.

Proof. We may assume that A is not relatively compact in k^n. By Lemma 2, G_a^n has a decomposition $G_a^n = M \times N$ defined over k such that $M \simeq G_a^t$, $N \simeq G_a^{n-t}$ over k, $t > 0$, and $M \subset \ker(f_j)$, and the projection $pr_N(A)$ of A in N is relatively compact in $N(k)$. Now let $A_1 = pr_M(A)$. Clearly $A_1, f_2|_M, \ldots, f_l|_M$ satisfy all the conditions in Lemma 3. By induction on l, our assertion is true in M and consequently in G_a^n.

Proposition 4. Let k be a local field and G a k-subgroup of G_a^n. Then G_a^n has a decomposition $G_a^n = H \times L$ defined over k such that $H \simeq G_a^t$, $L \simeq G_a^{n-t}$ over k, $H \subset G$ and $(G \cap L)(k)$ is compact.

Proof. We may assume that $\text{ch}(k) = p > 0$. By [4, p. 102, Proposition], there exist additive k-morphisms f_1, \ldots, f_l such that $G = \cap_{i=1}^l \ker(f_i)$. Now the proposition is an immediate consequence of Lemma 3.

Theorem 5. Let G be a connected linear algebraic unipotent group defined over a local field k. The following conditions are equivalent.

(i) G is anisotropic over k.

(ii) There exist no nontrivial additive k-morphisms from G_a into G.

(iii) $(G(k))$ is compact.

Proof. If $\text{ch}(k) = 0$, G is always k-splitting. In this case, all three conditions are equivalent to $G = \{1\}$. Hence we may assume that $\text{ch}(k) = p > 0$ and prove the theorem in several steps.

Clearly, (iii) \(\rightarrow\) (i) \(\rightarrow\) (ii). Thus we show (ii) \(\rightarrow\) (iii). Condition (ii) is equivalent to the condition that the maximal k-splitting subgroup of G is $\{1\}$.

Step 1. G is commutative and $G^p = \{1\}$. We know [3, p. 34, Corollary 2] that G is isomorphic to G_a^m over k^{p^m} for certain nonnegative integers m, l. Hence there is an isomorphism $G \rightarrow G_a^m$ defined over k^{p^m}. Let $f: G \rightarrow G_a^m$ be the k-morphism given by $f(x) = \tau(x)^{p^m} (x \in G)$. Clearly, $\ker(f) = \{1\}$. Express τ in the form $\tau = \sum_{i=1}^r \omega_i \tau_i$ where τ_i are defined over k and $\omega_i (\in k^{p^r})$ are linearly independent.
over k. It is easy to see that for $x, y \in G(k)$, $\tau_a(x + y) = \tau_a(x) + \tau_a(y)$. Since $G(k)$ is Zariski-dense in G, the maps τ_a are k-morphisms of G into G^m_a. By assumption on τ, the differential $d\tau$ of τ is an isomorphism, it follows readily that $\cap_a \ker(d\tau_a) = \{0\}$. Therefore the map $g: G \to G^m_a$ given by $g(x) = (\tau_a(x)) (x \in G)$ is a separable k-morphism. Now using f and g, we define $\omega: G \to G^{|\tau| + 1}_a$ by $\omega(x) = (f(x), g(x)) (x \in G)$. Clearly, ω defines a k-embedding of G into $G^{|\tau| + 1}_a$. From Proposition 4, $G(k)$ has to be compact.

Step 2. Suppose that G has a connected normal k-subgroup N with $\{1\} \neq N \neq G$. Let $L = G/N$, and L' its maximal k-splitting subgroup. If $L' \neq L$, let H be the inverse image of L' in G. By induction on dimension, $H(k)$ and $(G/H)(k)$ are compact. Since the image of $G(k)$ in $(G/H)(k)$ is open, it follows that $G(k)/H(k)$ is compact, thus so is $G(k)$.

Step 3. G is commutative and $G' \neq \{1\}$. Let l be the largest integer with $G^{l+1} \neq \{1\}$ and $N = G^{l'}$. Let $L = G/N$ and L' the maximal k-splitting subgroup of L. If $L \neq L'$, by Step 2, $G(k)$ is compact. If $L = L'$, the map $x \mapsto x^l (x \in G)$ factors through L. Then G^l, as a homomorphic image of a k-splitting unipotent group, by [3, p. 35, Proposition 6] is k-splitting. However, $G^l \neq \{1\}$ and by condition (ii), this is impossible.

Step 4. G is not commutative. Let $N = [G, G]$, $L = G/N$ and L' the maximal k-splitting subgroup of L. Suppose that $L = L'$. Let H be the last term in the lower central series with $H \subseteq Z(G)$ where $Z(G)$ is the center of G. Then choose any $h \in H(k)$ such that $h \notin Z(G)$ and consider the map $x \mapsto xhx^{-1}h^{-1} (x \in G)$. The image of the map is in $Z(G)$ by our choice of H, hence is a k-morphism of algebraic groups. It factors through L. Therefore $[h, G]$, by [3, Proposition 6] is k-splitting. By (ii), $[h, G]$ is anisotropic over k, thus $[h, G] = \{1\}$. However $h \notin Z(G)$, we have a contradiction. Therefore $L' \neq L$ and by Step 2, $G(k)$ is compact.

Now are ready to prove our main result.

Proof. When $\text{ch}(k) = 0$, all the three conditions are equivalent to that G is an isotropic torus for $R_u(G)$ is always splitting over k. Hence we may assume that $\text{ch}(k) = p > 0$.

(i) \rightarrow (ii). By [4, p. 114, Corollary 2], G is nilpotent. Clearly, T is anisotropic over k. Let H be the maximal k-splitting subgroup of G/T and L its preimage in G. Since T is splitting over a finite separable extension K of k, L is splitting over K. This implies that $R_u(L)$ is defined over K. On the other hand, L is defined over k, so $R_u(L)$ is k-closed. Thus $R_u(L)$ is defined over k. As $R_u(L)$ is k-isomorphic to $L/T = H$, $R_u(L)$ is splitting over k. Therefore $R_u(L) = \{1\}$ and so is $H = \{1\}$.

(ii) \rightarrow (iii). From Lemma 1 and Theorem 5, $T(k)$ and $(G/T)(k)$ are compact. We know that the image of $G(k)$ in $(G/T)(k)$ is open, hence compact. It follows readily that $G(k)$ is compact because $T(k)$ and $G(k)/T(k)$ are compact.

(iii) \rightarrow (i) is obvious.
REFERENCES

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907