Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Derivations on commutative Banach algebras


Author: A. Khosravi
Journal: Proc. Amer. Math. Soc. 84 (1982), 60-64
MSC: Primary 46J05
DOI: https://doi.org/10.1090/S0002-9939-1982-0633278-9
MathSciNet review: 633278
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a commutative Banach algebra with radical $ R$ and $ D$ be a derivation on $ A$. If $ K = \{ x \in R:\;{\text{for every }}n \geqslant 1,\;{D^n}x \in R\} $, then $ DA \subseteq R$ if and only if $ K$ is closed.


References [Enhancements On Off] (What's this?)

  • [1] G. R. Allan, Embedding the algebra of formal power series in a Banach algebra, Proc. London Math. Soc. 25 (1972), 329-340. MR 0305071 (46:4201)
  • [2] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973. MR 0423029 (54:11013)
  • [3] J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. (2) 16 (1977), 493-500. MR 0461136 (57:1121)
  • [4] H. G. Dales, Automatic continuity: A survey, Bull. London Math. Soc. 10 (1978), 129-183. MR 500923 (80c:46053)
  • [5] B. E. Johnson, Continuity of derivations on commutative Banach algebras, Amer. J. Math. 91 (1969), 1-10. MR 0246127 (39:7433)
  • [6] N. P. Jewell and A. M. Sinclair, Epimorphisms and derivations on $ {L^1}(0,1)$ are continuous, Bull. London Math. Soc. 8 (1976), 135-139. MR 0402507 (53:6326)
  • [7] R. J. Loy, Continuity of derivations on topological algebras of power series, Bull, Austral. Math. Soc. 1 (1969), 419-424. MR 0415334 (54:3423)
  • [8] A. M. Sinclair, Continuous derivatives on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170. MR 0233207 (38:1530)
  • [9] -, Automatic continuity of linear operators, London Math. Soc. Lecture Note Series, vol. 21, Cambridge Univ. Press, London, 1976. MR 0487371 (58:7011)
  • [10] M. Singer and J. Wermer, Derivatives on commutative normed algebras, Math. Ann. 129 (1955), 260-264. MR 0070061 (16:1125c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J05

Retrieve articles in all journals with MSC: 46J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0633278-9
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society