Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Relative weak convergence in semifinite von Neumann algebras


Author: Victor Kaftal
Journal: Proc. Amer. Math. Soc. 84 (1982), 89-94
MSC: Primary 46L10
DOI: https://doi.org/10.1090/S0002-9939-1982-0633284-4
MathSciNet review: 633284
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An operator is compact relative to a semifinite von Neumann algebra, i.e., belongs to the two-sided closed ideal generated by the finite projections relative to the algebra, if and only if it maps vector sequences converging weakly relative to the algebra into strongly converging ones (generalized Hilbert condition). The generalized Wolf condition characterizes the class of almost Fredholm operators.


References [Enhancements On Off] (What's this?)

  • [1] M. Breuer, Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243-254. MR 0234294 (38:2611)
  • [2] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873. MR 0005790 (3:208c)
  • [3] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
  • [4] V. Kaftal, On the theory of compact operators in von Neumann algebras. I, Indiana Univ. Math. J. 26 (1977), 447-457. MR 0463970 (57:3908)
  • [5] -, Almost Fredholm operators in von Neumann algebras, Integral Equations Operator Theory (to appear). MR 646879 (83c:46054)
  • [6] C. Peligrad and L. Zsido', A Riesz decomposition theorem in $ {W^* }$-algebras, Acta Sci. Math. (Szeged) 34 (1973), 317-322. MR 0341123 (49:5873)
  • [7] M. Soins, On a class of operators in von Neumann algebras with Segal measures, Math. USSR-Sb. 13 (1971), 344-359.
  • [8] F. Wolf, On the invariance of the essential spectrum under a change of boundary conditions of partial differential operators, Nederl. Akad. Wetensch. Indag. Math. 21 (1959), 142-315. MR 0107751 (21:6473)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10

Retrieve articles in all journals with MSC: 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0633284-4
Keywords: Compact operator, almost Fredholm operator, relative weak convergence, Calkin algebra, Wolf Theorem, semifinite von Neumann algebra
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society