ON A THEOREM OF BAKER, LAWRENCE AND ZORZITTO

L. SZÉKELYHIDI

Abstract. The result of J. Baker, J. Lawrence and F. Zorzitto on the stability of the equation \(f(x + y) = f(x)f(y) \) is generalized by proving the following theorem: if \(G \) is a semigroup and \(V \) is a right invariant linear space of complex valued functions on \(G \), and if \(f, m \) are complex valued functions on \(G \) for which the function \(x \rightarrow f(xy) - f(x)m(y) \) belongs to \(V \) for every \(y \) in \(G \), then either \(f \) is in \(V \) or \(m \) is exponential.

In [1] J. Baker, J. Lawrence and F. Zorzitto, solving a problem of E. Lukacs on the stability of the functional equation \(f(x + y) = f(x)f(y) \) proved that if \(f \) is a function from a vector space to the real numbers satisfying

\[
|f(x + y) - f(x)f(y)| < \delta
\]

then \(f \) is either bounded or exponential. This result was also generalized and simplified in [2]. Here we generalize this result in another way.

Let \(G \) be a semigroup and \(V \) be a linear space of complex valued functions on \(G \). Then \(V \) is called right invariant if \(f \) belongs to \(V \) implies that the function \(x \rightarrow f(xy) \) belongs to \(V \) for every \(y \) in \(G \). Similarly, we can define left invariant linear spaces, and we call \(V \) invariant if it is right and left invariant.

The complex valued function \(m : G \rightarrow \mathbb{C} \) (\(\mathbb{C} \) denotes the set of complex numbers) is called an exponential if for every \(x, y \) in \(G \) we have

\[
m(xy) = m(x)m(y).
\]

Our main result is the following

Theorem. Let \(G \) be a semigroup and \(V \) be a right invariant linear space of complex valued functions on \(G \). Let \(f, m : G \rightarrow \mathbb{C} \) be complex valued functions for which the function \(x \rightarrow f(xy) - f(x)m(y) \) belongs to \(V \) for every \(y \) in \(G \). Then either \(f \) is in \(V \) or \(m \) is an exponential.

Proof. Suppose that \(m \) is not an exponential. Then there exist \(y, z \) in \(G \) with the property \(m(yz) - m(y)m(z) \neq 0 \). On the other hand we have, for all \(x \) in \(G \),

\[
f(xyz) - f(xy)m(z) = [f(xyz) - f(x)m(yz)] - m(z)[f(xy) - f(x)m(y)] + f(x)[m(yz) - m(y)m(z)]
\]

and hence

\[
f(x) = [(f(xyz) - f(xy)m(z)) - (f(xyz) - f(x)m(yz))] + m(z)(f(xy) - m(y)f(x)) \cdot [m(yz) - m(y)m(z)]^{-1}.
\]
Here the right-hand side as a function of x belongs to V, and hence so does f.

Corollary. Let G be a semigroup with identity and V be an invariant linear space of complex valued functions on G. Let $f, m : G \rightarrow \mathbb{C}$ be complex valued functions for which the functions $x \rightarrow f(xy) - f(x)m(y)$ and $y \rightarrow f(xy) - f(x)m(y)$ belong to V for every y in G and x in G, respectively. Then either f is in V or m is an exponential and $f = f(1)m$.

Proof. Suppose that f is not in V. Then by the preceding theorem, m is an exponential. On the other hand, the function $y \rightarrow f(y) - f(1)m(y)$ is in V and for x, y in G we have

$$f(xy) - f(1)m(xy) = f(xy) - f(x)m(y) + f(x)m(y) - f(1)m(x)m(y)$$

$$= f(xy) - f(x)m(y) + [f(x) - f(1)m(x)]m(y).$$

If there is an x_0 in G for which $f(x_0) \neq f(1)m(x_0)$, then m belongs to V and so does f, which is a contradiction. Hence $f = f(1)m$ which was to be proved.

Remark. Here we make clear how the corollary generalizes the cited result. Let G be an Abelian semigroup with identity and V be the space of bounded complex valued functions on G. If $f, m : G \rightarrow \mathbb{C}$ are functions for which there exist $M_1, M_2 : G \rightarrow [0, +\infty)$ such that

$$|f(xy) - f(x)m(y)| < \min(M_1(x), M_2(y))$$

for all x, y in G then either f is bounded or m is exponential and $f = f(1)m$.

Example. Let G be a commutative topological group and $f : G \rightarrow \mathbb{C}$ be such that $x \rightarrow f(x + y) - f(x)f(y)$ is continuous for each y in G. Then either f is continuous or exponential. Other interesting examples can be constructed by taking V to be the class of measurable or integrable functions on appropriate groups.

References

Department of Mathematics, Kossuth Lajos University, 4010 Debrecen, Hungary