DERIVATIVES OF H^p FUNCTIONS

KNUT ØYMA AND SERGE ROOKSHIN

ABSTRACT. We prove that if $\{z^n\}$ is uniformly separated and $f \in H^p$, then
\[\left\{ f^{(k)}(z^n)(1 - |z^n|^2)^{k+1/p} \right\}_{n=1}^\infty \in l^p \]
for $k = 1, 2, \ldots$.

We give a simple proof of

LEMMA. Let $\{z^n\}$ be uniformly separated and $f \in H^p$. For $k = 1, 2, \ldots$ we have
\[\left\{ f^{(k)}(z^n)(1 - |z^n|^2)^{k+1/p} \right\}_{n=1}^\infty \in l^p. \]

H^p is the Hardy space of the unit disc D. A sequence $\{z^n\} \in D$ is called
uniformly separated if
\[\inf_n \prod_{m \neq n} \left| \frac{z_n - z_m}{1 - \bar{z}_n z_m} \right| > 0. \]

A technical proof of the lemma was given in [2]. There it was also proved that
every l^p sequence is obtained in this way. When [2] was published, the result was
already known in the Soviet Union (see, for instance, F. A. Shamoian’s paper [3]).
Inspired by this paper we prove the lemma.

For small τ let $D_n = \{z: |z - z_n| \leq \tau(1 - |z_n|)\}$. A simple computation using the
pseudohyperbolic metric $\eta(a, b) = \frac{|a - b|}{1 - \bar{a}b}$ proves that $z^*_n \in D_n \Rightarrow \{z^*_n\}$
is uniformly separated. By Cauchy’s formula

\[|f^{(k)}(z^n)| = \frac{k!}{2\pi i} \int_{\partial D_n} \frac{f(\xi)}{(\xi - z_n)^{k+1}} d\xi \leq A(1 - |z_n|^2)^{-k} \max_{\xi \in D_n} |f(\xi)| \]

\[= A(1 - |z_n|^2)^{-k} |f(z^*_n)|. \]

Hence

\[|f^{(k)}(z^n)(1 - |z_n|^2)^{k+1/p}| \leq A |f(z^*_n)|(1 - |z_n|^2)^{1/p} \]

\[\leq A \cdot B |f(z^*_n)|(1 - |z^*_n|^2)^{1/p} \]

where B is seen to be independent of n. Since $\{z^*_n\}$ is uniformly separated,
the lemma follows from the well-known interpolation theorem of Shapiro and Shields [1].

Received by the editors January 29, 1981.

1980 Mathematics Subject Classification. Primary 30E05; Secondary 30D55.

Key words and phrases. Uniformly separated, H^p functions.

© 1982 American Mathematical Society

0002-9939/82/0000-0022/$01.50

97
REFERENCES

Department of Mathematics, Agder Distriksaborghole, Kristiansand, Norway

Department of Mathematics, Teachers Training College, Leningrad, U.S.S.R.