DIHEDRAL ALGEBRAS ARE CYCLIC

LOUIS H. ROWEN1 AND DAVID J. SALTMAN2,3

Abstract. Any central simple algebra of degree n split by a Galois extension with dihedral Galois group of degree $2n$ is, in fact, a cyclic algebra. We assume that the centers of these algebras contain a primitive nth root of unity.

In his book [1], Albert has a proof that every division algebra of degree 3 is cyclic. In this paper we will generalize this result, and derive the theorem below. Our argument is very close to that of Albert, and arose as part of a close examination of his proof. Fix n to be an odd positive integer, and F a field of characteristic prime to n. Denote by D_n the dihedral group of order $2n$. We assume the reader is familiar with the basics of the theory of finite dimensional simple algebras as presented, for example, in Albert's book.

Theorem 1. Let D be a simple algebra of degree n with center F. Assume F contains a primitive nth root of one. Suppose D is split by a Galois extension L/F with Galois group D_n. Then D is a cyclic algebra, that is, D is split by a cyclic Galois extension of degree n.

Before beginning the proof of the above theorem, we note that Snider [4] has already shown that such D are similar (in the Brauer group) to a tensor product of cyclic algebras.

The group D_n is generated by o, r where $o^n = 1, r^2 = 1$ and $o r = r o^{-1}$. Given L/F as in the theorem, we let K denote the fixed field of o in L, and L_0 the fixed field of o. Clearly L splits $D \otimes_F K$, which also has degree n. Since L/K has degree 2 and n is odd, $D \otimes_F K$ is already split. That is, K splits D. So K can be assumed to be a subfield of D.

Since L/L_0 is cyclic, there is an $\alpha \in L$ such that $\alpha^n \in L_0$ and $o(\alpha) = \rho \alpha$ where ρ is a primitive nth root of one. View L as a subfield of $D \otimes_F L_0$. Then there is a unit $\beta \in D \otimes_F L_0$ such that $\alpha \beta = \rho \beta \alpha$. Let τ act on $D \otimes_F L_0$ via its action on L_0. This next lemma, essentially in [1, p. 177], is included here because it is not stated there with the generality we require. For convenience, we provide a proof.

Lemma 2. We may assume $\tau(\beta) = \beta^{-1}$.
PROOF. Since \(\alpha(\tau(\alpha)) = \tau^{-1}(\alpha) = \rho^{-1}(\alpha) \), we have \(\tau(\alpha) = a \alpha^{-1} \), where \(a \in L_0 \).

In fact, since \(\alpha = \tau^{2}(\alpha) = \tau(\alpha a^{-1}) = \tau(a) a^{-1} \alpha \), we have \(\tau(\alpha) = a \) and so \(a \in F \).

Let \(r = (n + 1)/2 \) and set \(\beta^r = \beta^{r}\tau(\beta)^{-r} \). Compute that \(\alpha \beta^r = \rho \beta^r \alpha \) and \(\tau(\beta^r) = \beta^{-r} \). Q.E.D.

With \(\beta \) as in Lemma 2, \(L_0(\beta) \) is Galois over \(F \) with group \(D_{2n} \). (If \(D \) is not a division algebra, \(L_0(\beta) \) may be a direct sum of fields, but this does not affect our argument.) Applying Lemma 2 again (reversing the roles of \(\alpha \) and \(\beta \)), we may also assume \(\tau(\alpha) = \alpha^{-1} \). To prove the theorem, it suffices to find \(\eta \in D \) such that \(0 \neq \eta^m \in F \) and \(\eta^m \notin F \) for \(1 < m < n \). That \(\eta \in D \) is equivalent to saying \(\eta \in D \otimes_F L_0 \) and \(\eta \) is fixed by \(1 \otimes \tau \). The key step in finding such an \(\eta \) is the following.

Lemma 3. Suppose \(c \in K \). Set \(\eta = (\beta + \beta^{-1})c \). Denote by \(X^n + c_1X^{n-1} + \cdots + c_n \) the characteristic polynomial of \(\eta \). Then \(c_i = 0 \) for all \(i \) odd such that \(1 < i < n \).

PROOF. To start off with, assume \(F \) has characteristic 0. If \(r \) is odd and \(1 < r < n \), then \(\eta^r \) is a sum of terms of the form \(d\beta^s \) where \(d \in L, s \) is odd, and \(-r < s < r \). Thus \(\eta^r \) has reduced trace zero. Using Newton's identity (e.g. [3, p. 135]), this case of the lemma is done.

To prove the lemma in general, we use a specialization argument, which we only outline. Let \(R_1 \) be the number ring \(Z(\rho)(1/n) \). Set \(T \) to be the localized polynomial ring \(R_1[\alpha, \beta, z_1, \ldots, z_n](1/w) \) where \(w \) is the \(\sigma \) norm of \(yx(x^2 - 1)(y^2 - 1) \). Let \(D_n \) act on \(T \) via \(\sigma(x) = px, \tau(x) = x^{-1}, \sigma(y) = y, \tau(y) = y^{-1}, \tau(z_i) = z_i, \) and \(\sigma(z_i) = z_{i+1} \) (indices modulo \(n \)). The fixed ring of \(D_n \) on \(T \) we call \(R \), while we let \(S \) denote the fixed ring of \(\sigma \) on \(T \). One can show that \(T/R \) is a Galois extension of commutative rings with group \(D_n \). \(T/R \) is a generic model for \(L/F \), with \(S \) corresponding to \(L_0, x \) corresponding to \(a, y \) corresponding to \(\beta^n, \) and \(z_1 \) corresponding to \(c \).

Form the cyclic Azumaya algebra \(A = (T/S, o, y), \) and take \(v \in A \) such that \(v^n = y \) and \(v^{-1}av = \sigma(a) \) for \(a \in T \). Extend \(\tau \) to \(A \) by setting \(\tau(v) = v^{-1} \). Of course, \(A \) is a generic model for \(D \otimes_F L_0 \) with \(v \) corresponding to \(\beta \).

Consider \(\eta^r = (v + v^{-1})z_1 \). Let \(\eta^r \) have characteristic polynomial \(X^n + d_1X^{n-1} + \cdots + d_n \), where \(d_i \in R \). By considering \(A \otimes_Z Q \), we conclude that \(d_i \in F \) if \(i \) is odd and less than \(n \). Then lemma now follows by specialization. Q.E.D.

To finish the proof of Theorem 1, set \(\eta = (\beta + \beta^{-1})(a + a^{-1})^{-1} \), and suppose \(X^n + c_1X^{n-1} + \cdots + c_n \) is the characteristic polynomial of \(\eta \). We have \(c_1 = c_3 = \cdots = c_{n-2} = 0 \). We claim \(\beta + \beta^{-1} \), and hence \(\eta \), can be assumed to be a unit. But \(\beta + \beta^{-1} \) has reduced norm \(\beta^n + \beta^{-n} \in F \) so it suffices to show that we can assume \(\beta^n + \beta^{-n} \neq 0 \). But if \(\beta^n + \beta^{-n} = 0 \) then \((\beta^n)^2 = 1 \) so \(\beta^n = -1 \) and \(D \) is a split algebra, a case which is trivial. Now \(\eta^{-1} = (a + a^{-1})(\beta + \beta^{-1})^{-1} \) has characteristic polynomial \(X^n + (c_{n-1}/c_n)X^{n-1} + \cdots + (1/c_n) \). Lemma 3 also applies to \(\eta^{-1} \) by symmetry, \(c_{n-1} = c_{n-3} = \cdots = c_2 = 0 \). Thus \(\eta^n = -c_n \in F \). It is trivial to see that \(\eta^m \notin F \) for \(m < n \), and so the theorem is proved.
As a final remark, note that the result corresponding to Theorem 1 for D_p and fields of characteristic p is a consequence of the more general theorem in [2].

REFERENCES

DEPARTMENT OF MATHEMATICS, BAR ILAN UNIVERSITY, RAMAT GAN, ISRAEL

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520