ON THE DIVISIBLE PART OF
THE BRAUER GROUP OF A FIELD

TILMANN WÜRFEL

Abstract. For a field k and an odd prime $p \neq \text{char}(k)$ such that the p-primary component $B(k)_{(p)}$ of the Brauer group $B(k)$ of k is not zero there exists a finite extension k'/k such that $B(k'_{(p)})$ contains a nontrivial divisible subgroup.

Let k be an arbitrary field, $p \neq \text{char}(k)$ a prime, and $B(k)_{(p)}$ the p-primary component of the Brauer group $B(k)$ of k. Brumer and Rosen [1] conjecture that either $2B(k)_{(p)} = 0$ or $B(k)_{(p)}$ contains a nontrivial divisible subgroup. As an easy consequence of our investigation of the relative Brauer group of a maximal p-extension [3], we are able to show the conjecture is true modulo a finite extension of k. For the facts about profinite groups used here, we refer the reader to [2].

Theorem. Let k be a field and $p \neq \text{char}(k)$ a prime. If $2B(k)_{(p)}$ is not zero, then there exists a finite separable extension k'/k such that $B(k'_{(p)})$ contains a nontrivial divisible subgroup and the maximal power of p dividing $[k : k']$ is at most 2.

We need a simple lemma for the proof. For V a profinite group let $V_{(p)}$ denote the smallest normal subgroup such that $V/V_{(p)}$ is a pro-p-group. Then $F_{(p)} < W_{(p)}$ for $V < W$.

Lemma. Let G be a profinite group, S a pro-p-subgroup, and \mathcal{V} the set of open subgroups of G containing S. Then $S = \lim \sup_{\mathcal{V}} V_{(p)}$.

Proof. Consider the exact sequence $1 \to V_{(p)} \to V \to V/V_{(p)} \to 1$ for $V \in \mathcal{V}$. Since $\cap_{V \in \mathcal{V}} V = S$ and the inverse limit is exact for profinite groups, we have only to show that $\cap_{V \in \mathcal{V}} V_{(p)} = 1$. Let U be an open normal subgroup of G. Then $V = SU$ is in \mathcal{V} and $V_{(p)} < U$ because V/U is pro-p. So $\cap_{V \in \mathcal{V}} V_{(p)}$ is contained in the intersection of all open normal subgroups of G which is trivial.

Proof of the Theorem. Let k_s be the separable closure of k, with Galois group G over k, μ_{p^n} the group of p^nth roots of unity in k_s, and $\mu = \cup_{n=1,2,\ldots} \mu_{p^n}$. Denote by k_0 the field $k(\mu_p)$ if $p \neq 2$, and $k(\mu_2)$ if $p = 2$. Since its degree $[k_0 : k]$ divides $p - 1$ or 2, respectively, we have $B(k_0)_{(p)} \neq 0$. Hence it suffices to consider the situation $k = k_0$ and $B(k)_{(p)} \neq 0$ and to show there exists a finite extension k' of k in k_s, of degree $[k' : k]$ prime to p, such that $B(k'_{(p)})$ contains a nontrivial divisible subgroup.
By [1, Lemma 2] we have $B(k)(p) = H^2(G, \mu)$. Let S be a Sylow p-subgroup of G. Since $cd_p(G) = cd(S)$, S cannot be a free pro-p-group and hence, by the lemma, there exists an open subgroup V of G containing S, such that the group $V/V_{(p)}$ is not pro-p-free. Let \tilde{k} and K be the subfields of k, left fixed by the groups V and $V_{(p)}$, respectively. Then $[\tilde{k} : k] = [G : V]$ is prime to p and \tilde{k} contains the pth or fourth roots of unity. The field K is the maximal p-extension of \tilde{k} and the Galois group $\text{Gal}(K/\tilde{k})$ is $V/V_{(p)}$, which is not pro-p-free. Hence, by [3, Satz 3(a)], the part $B(K/\tilde{k})$ of the Brauer group $B(\tilde{k})$ split by K contains a nontrivial divisible $(p$-primary) subgroup.

REFERENCES

Mathematisches Institut der Universität, Theresienstrasse 39, D-8000 München 2, Federal Republic of Germany