A SIMPLE PROOF OF THE EXTENSION THEOREM OF SEQUENCES OF DIVIDED POWERS IN CHARACTERISTIC \(p \)

MITSUHIRO TAKEUCHI

Abstract. Using the idea of relative Hopf modules, a short proof of the extension theorem of sequences of divided powers in irreducible cocommutative Hopf algebras over a field of characteristic \(p > 0 \) is presented.

Let \(k \) be a field of characteristic \(p > 0 \). Let \(H \) be an irreducible cocommutative Hopf algebra over \(k \). The \(V \)-map for \(H \) [1, (4.1)]

\[V : H \to k^{1/p} \otimes H \]

is a \(\frac{1}{p} \)-linear Hopf algebra map [1, p. 279] with kernel \(HL \) where \(L = P(H) \), the primitives in \(H \) [4, Theorem 1]. We define a descending set of Hopf subalgebras \(\{ V^n(H) \}_{n \geq 0} \) inductively as follows: \(V^0(H) = H, \ V^n(H) = V(V^{n-1}(H)) \cap H. \ (V^1(H) = V(H) \cap H \) is different from \(V(H) \). Since \(V(H) \) is a \(k^{1/p} \)-Hopf subalgebra of \(k^{1/p} \otimes H \), it is easy to check that each \(V^n(H) \) is a \(k \)-Hopf subalgebra of \(H \).

An element \(x \in H \) has coheight \(n \) if \(x \in V^n(H) \). For each integer \(e > 0 \), the integer \(\| e \| > 0 \) is defined by

\[p^{\| e \|} \leq e < p^{\| e \| + 1}. \]

A set of elements \(x_0 = 1, x_1, \ldots, x_n \) (\(n \) finite) in \(H \) is called an \(n \)-sequence of divided powers if

\[\Delta(x_i) = \sum_{j=0}^{i} x_j \otimes x_{i-j}, \quad 0 < i < n. \]

Theorem A [4, Lemma 7; and 2, Theorem 2]. Let \(t < p^{n+1} \) and let \(x_0, x_1, \ldots, x_{t-1} \) be a sequence of divided powers in \(H \) where \(x_i \) has coheight \(n - \| i \|, 0 < i < t \). There is an element \(x_i \) in \(H \) of coheight \(n - \| t \| \) such that \(x_0, x_1, \ldots, x_{t-1}, x_i \) is a sequence of divided powers.

The following extension theorem of sequences of divided powers is a key lemma to determine the coalgebra structure of \(H \) [4, Theorems 2 and 3]. The original proof of Sweedler, which consists of several steps, is done by induction on \(n \) and \(t \). In the following, we give an alternative proof, where we do not use induction, but the idea of relative Hopf modules [5] instead.

Received by the editors November 18, 1980.

1980 Mathematics Subject Classification. Primary 16A24.

Key words and phrases. Hopf algebra, sequence of divided powers.

1 Supported in part by NSF Grant MCS-77-18723 A03.
Proof. Replacing H by $V^{|\ell|}(H)$, we may assume $n = |\ell|$. Let \tilde{H} be the free k-algebra generated by H and one indeterminate z. Thus, if A is a k-algebra and $\varphi: H \to A$ an algebra map, then for any $a \in A$, there is a unique algebra map $\tilde{\varphi}: \tilde{H} \to A$ such that $\tilde{\varphi}|H = \varphi$ and $\tilde{\varphi}(z) = a$. Using this universal mapping property, define algebra maps

$$\tilde{\Delta}: \tilde{H} \to \tilde{H} \otimes \tilde{H}, \quad \tilde{\varepsilon}: \tilde{H} \to k$$

by the rule:

$$\tilde{\Delta}|H = \Delta \quad \text{(comultiplication of } H), \quad \tilde{\Delta}(z) = z \otimes 1 + 1 \otimes z + \sum_{i=1}^{n-1} x_i \otimes x_{i+1}, \quad \tilde{\varepsilon}|H = \varepsilon \quad \text{(augmentation of } H), \quad \tilde{\varepsilon}(z) = 0. \quad \text{Then } (\tilde{H}, \tilde{\Delta}, \tilde{\varepsilon}) \text{ is an irreducible cocommutative Hopf algebra containing } H \text{ as a Hopf subalgebra. Since } x_0, x_1, \ldots, x_{n-1}, z \text{ is a } t \text{-sequence of divided powers in } \tilde{H}, \quad V(z) = 0 \text{ if } p | t \text{ and } \quad V(z) = x_t \text{ if } t = ps. \quad \text{In the latter case, } x_t \text{ has coheight } |t| - |s| = 1. \quad \text{Hence } \quad V(z) \in V(H).$$

Since V is a semilinear Hopf algebra map, it follows that $V(\tilde{H}) = V(H)$. Let $\tilde{L} = P(\tilde{H})$, the primitives in \tilde{H}. Let U (resp. \tilde{U}) be the restricted universal enveloping algebra of L (resp. \tilde{L}). Then U (resp. \tilde{U}) is a Hopf subalgebra of H (resp. \tilde{H}) [3, Proposition 13.2.3]. We claim that the multiplication in \tilde{H} induces an isomorphism

$$H \otimes_U \tilde{U} \iso \tilde{H}.$$

Indeed, both sides are right (\tilde{H}, \tilde{U})-Hopf modules [5, p. 454] and the map is a homomorphism. Since \tilde{H} is irreducible, \tilde{H} is a free left (or right) \tilde{U}-module [5, Proposition 3]. Hence the category of right (\tilde{H}, \tilde{U})-Hopf modules is equivalent to the category of right $\tilde{H} / \tilde{H}L$-comodules [5, Theorem 1], where the equivalence is given by $M \mapsto M / M \tilde{L}$. If we apply this equivalence functor to the above homomorphism, we get the canonical map $H / HL \to \tilde{H} / \tilde{H}L$ which is an isomorphism, since $H / HL \iso V(H), \quad \tilde{H} / \tilde{H}L \iso V(\tilde{H})$ and $V(\tilde{H}) = V(H)$. This proves our claim.

Let X be a basis of \tilde{L} modulo L. Let Λ be the set of all functions from X to $\{0, 1, \ldots, p - 1\}$ with finite support. Give a total order on X. For each f in Λ, put

$$[f] = \frac{c_1^{e_1} \cdots c_n^{e_n}}{e_1! \cdots e_n!} \quad \text{and} \quad |f| = e_1 + \cdots + e_n$$

where $\{c_1, \ldots, c_n\}$ is the support of f with $c_1 < \cdots < c_n$ and $e_i = f(c_i)$. Then $\{[f] | f \in \Lambda\}$ is a free basis of the left U-module \tilde{U} (Poincaré-Birkhoff-Witt), hence of the left H-module \tilde{H}, and we have

$$\Delta[f] = \sum_{f = g + h} [g] \otimes [h].$$

Write $z = \sum_{f \in \Lambda} z[f]$, $z_f \in H$. Then

$$\tilde{\Delta}(z) = \sum \tilde{\Delta}(z_{g+h})([g] \otimes [h])$$

where the sum is taken over the set of all $g, h \in \Lambda$ with $g + h \in \Lambda$. Since $\tilde{\Delta}(z) = z \otimes 1 + 1 \otimes z + \sum_{i=1}^{n-1} x_i \otimes x_{i+1}$, and $\{[g] \otimes [h] | g, h \in \Lambda\}$ is a free basis of the left $H \otimes H$-module $\tilde{H} \otimes \tilde{H}$, it follows from comparison of the coefficients that $z_f = 0$ for $|f| > 1$ and $z_f \in k$ for $|f| = 1$. Put $x_t = z - \sum_{|f|=1} z_f[f]$. Then $x_t \in H$ and $\tilde{\Delta}(z) - z \otimes 1 - 1 \otimes z = \Delta(x_t) - x_t \otimes 1 - 1 \otimes x_t$. Hence $x_0, x_1, \ldots, x_{n-1}, x_t$ is a sequence of divided powers in H. Q.E.D.
The above idea of proof yields more general results. Note that we merely used the fact that \(V(H) = V(\tilde{H}) \) in the latter part of the above proof. Hence, what we proved actually is the following

Theorem B. Let \(\tilde{H} \) be an irreducible cocommutative Hopf algebra and let \(H \subset \tilde{H} \) be a Hopf subalgebra. Assume \(V(H) = V(\tilde{H}) \). If \(z \in \tilde{H} \) satisfies

\[
\Delta(z) = z \otimes 1 - 1 \otimes z \in H \otimes H
\]

there is an element \(x \in H \) such that

\[
\Delta(x) = x \otimes 1 - 1 \otimes x = \Delta(z) - z \otimes 1 - 1 \otimes z.
\]

It is enough to assume \(V(z) \in V(H) \) instead of \(V(H) = V(\tilde{H}) \). (Replace \(\tilde{H} \) by the Hopf subalgebra generated by \(H \) and \(z \).)

The above theorem can be interpreted as a cohomological vanishing theorem of the underlying coalgebras of irreducible cocommutative Hopf algebras. To clarify the meaning, for a pointed irreducible cocommutative coalgebra \(C \), let \(C^+ = \text{Ker}(\varepsilon) \) and

\[
\delta: C^+ \to C^+ \otimes C^+, \quad \delta(x) = \Delta(x) - x \otimes 1 - 1 \otimes x
\]

where 1 denotes the unique group-like element of \(C \). We want to determine the image \(\delta(C^+) \). Let \(\delta_n: C^+ \to \otimes^{n+1} C^+ \) be the \(n \) times iterated \(\delta \)-map. Let

\[
u = \sum_i x_i \otimes y_i \in C^+ \otimes C^+
\]

be an element satisfying

(a) \(\sum_i x_i \otimes y_i = \sum_i y_i \otimes x_i \),

(b) \(\sum_i \delta(x_i) \otimes y_i = \sum_i x_i \otimes \delta(y_i) \).

There is a pointed irreducible cocommutative coalgebra \(C' = C \otimes k \) which contains \(C \) as a subcoalgebra and satisfies

\[
\Delta(z) = z \otimes 1 + 1 \otimes z + u, \quad \varepsilon(z) = 0.
\]

Then \(V(z) \) is determined by \(u \) as follows: \(\sum_i \delta_{p-2}(x_i) \otimes y_i \) is a symmetric tensor in \(\otimes^p C^+ \). Let

\[
v: (\text{the symmetric tensors in } \otimes^p C^+) \to k^{1/p} \otimes C^+
\]

be the \(\frac{1}{p} \)-linear map defined [1, Theorem 4.1.1(a), p. 273] (where denoted by \(V \)). Put \(v(u) = v(\sum_i \delta_{p-2}(x_i) \otimes y_i) \). Then \(V(z) \) is precisely \(v(u) \).

If \(C \) underlies a Hopf algebra, then the image \(\delta(C^+) \) can be characterized as follows.

Theorem C. Let \(H \) be an irreducible cocommutative Hopf algebra. The image \(\delta(H^+) \) is precisely the set of elements \(u \) in \(H^+ \otimes H^+ \) satisfying (a), (b) and (c)

\[
v(u) \in V(H).
\]

Proof. If \(u = \delta(x) \) with \(x \in H^+ \), then \(u \) satisfies (a), (b) and \(v(u) = V(x) \in V(H) \). Conversely, if \(u \) satisfies (a), (b), (c), let \(\tilde{H} \) be the Hopf algebra generated by \(H \) and one indeterminate \(z \) with \(\delta(z) = u, \varepsilon(z) = 0 \). It follows from \(V(z) = v(u) \in V(H) \) that \(V(H) = V(\tilde{H}) \). Hence \(\delta(z) = \delta(x) \) for some \(x \in H \) by Theorem B. Q.E.D.
Theorem A follows from Theorem C applied to $u = \sum_{i=1}^{t-1} x_i \otimes x_{t-i}$ and $\mathcal{V}^{n-\|\mathcal{E}\|}(H)$ as H.

References

School of Mathematics, The Institute for Advanced Study, Princeton, New Jersey 08540

Current address: Department of Mathematics, University of Tsukuba, Ibaraki 305, Japan