Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Tauberian theorem for strong Abel summability type


Author: Indulata Sukla
Journal: Proc. Amer. Math. Soc. 84 (1982), 185-191
MSC: Primary 40E05; Secondary 40G10
DOI: https://doi.org/10.1090/S0002-9939-1982-0637166-3
MathSciNet review: 637166
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper the author has defined a new method of strong Abel summability type $ {\{ A,\lambda \} _m}$ and obtained a necessary and sufficient type of Tauberian conditions for $ \Sigma {a_n}$ to be summable $ {[R,\lambda ,k]_m}$, whenever it is summable $ {\{ A,\lambda \} _m}$. This result is analogous to one result of Flett [4].


References [Enhancements On Off] (What's this?)

  • [1] A. V. Boyd and J. M. Hyslop, A definition of strong Rieszian summability and its relationship to strong Cesàro summability, Proc. Glasgow Math. Assoc. 1 (1952), 94-99. MR 0051330 (14:463d)
  • [2] K. Chandrasekharan and S. Minakshisundaran, Typical means, Tata Inst. of Fundamental Research Monograph on Math., no. 1, Oxford Univ. Press, 1952. MR 0055458 (14:1077c)
  • [3] T. M. Flett, Some generalizations of Tauber's second theorem, Quart. J. Math. Oxford Ser. (2) 10 (1959), 70-80. MR 0130510 (24:A371)
  • [4] -, Some remarks on strong summability, Quart. J. Math. Oxford Ser. (2) 10 (1959), 115-139. MR 0107769 (21:6491)
  • [5] M. Glatfeld, On strong Rieszian summability, Proc. Glasgow Math. Assoc. 3 (1957), 123-131. MR 0118992 (22:9761)
  • [6] G. H. Hardy and M. Riesz, The general theory of Dirichlet's series, Cambridge Tracts in Math, and Math. Phys., no. 18, Stechert-Hafner, New York, 1964. MR 0185094 (32:2564)
  • [7] P. Srivastava, On strong Rieszian summability of infinite series, Proc. Nat. Inst. Sci. India Part A 23 (1957), 58-71. MR 0096057 (20:2555)
  • [8] -, On strong summability of infinite series, Math. Student 31 (1963), 167-192. MR 0177231 (31:1495)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40E05, 40G10

Retrieve articles in all journals with MSC: 40E05, 40G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0637166-3
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society