Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Uniqueness and quasimeasures on the group of integers of a $ p$-series field


Authors: William R. Wade and Kaoru Yoneda
Journal: Proc. Amer. Math. Soc. 84 (1982), 202-206
MSC: Primary 43A50; Secondary 12B40, 22E50, 42C99
Erratum: Proc. Amer. Math. Soc. 88 (1983), 378.
MathSciNet review: 637169
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be the group of integers of a $ p$-series field and suppose that $ S$ is a character series on $ G$. If $ {N_1}$, $ {N_2}, \ldots $ is any sequence of integers and if $ {S_{{p^{{N_j}}}}} \to 0$ a.e. on $ G$, as $ j \to \infty $, then $ S$ will be the zero series provided $ S$ never diverges unboundedly.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A50, 12B40, 22E50, 42C99

Retrieve articles in all journals with MSC: 43A50, 12B40, 22E50, 42C99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1982-0637169-9
PII: S 0002-9939(1982)0637169-9
Keywords: Group of integers of a $ p$-series field, uniqueness, Walsh functions, Egoroff's Theorem
Article copyright: © Copyright 1982 American Mathematical Society