Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A Radon-Nikodým theorem for natural cones associated with von Neumann algebras

Author: Hideki Kosaki
Journal: Proc. Amer. Math. Soc. 84 (1982), 207-211
MSC: Primary 46L50
MathSciNet review: 637170
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The natural cone associated with a von Neumann algebra admitting a cyclic and separating vector $ {\xi _0}$ is considered. For any vector $ \xi $ in the cone, there always exists a closed operator $ t$ affiliated with the algebra satisfying $ \xi = tJtJ{\xi _0}$.

References [Enhancements On Off] (What's this?)

  • [1] Huzihiro Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309–354. MR 0350437
  • [2] Alain Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 4, x, 121–155 (1975) (French, with English summary). MR 0377533
  • [3] A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), no. 2, 153–164. MR 561983,
  • [4] Alain Connes and Masamichi Takesaki, The flow of weights on factors of type 𝐼𝐼𝐼, Tôhoku Math. J. (2) 29 (1977), no. 4, 473–575. MR 480760,
  • [5] U. Haagerup, The standard form of von Neumann algebras, University of Copenhagen, 1973.
  • [6] Uffe Haagerup, 𝐿^{𝑝}-spaces associated with an arbitrary von Neumann algebra, Algèbres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977) Colloq. Internat. CNRS, vol. 274, CNRS, Paris, 1979, pp. 175–184 (English, with French summary). MR 560633
  • [7] Michel Hilsum, Les espaces 𝐿^{𝑝} d’une algèbre de von Neumann définies par la derivée spatiale, J. Funct. Anal. 40 (1981), no. 2, 151–169 (French, with English summary). MR 609439,
  • [8] Hideki Kosaki, Positive cones and 𝐿^{𝑝}-spaces associated with a von Neumann algebra, J. Operator Theory 6 (1981), no. 1, 13–23. MR 636997
  • [9] -, Application of the complex interpolation method to a von Neumann algebra (Non-commutative $ {L^p}$-spaces), preprint.
  • [10] M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970. MR 0270168

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L50

Retrieve articles in all journals with MSC: 46L50

Additional Information

Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society