PSEUDOHOLOMORPHIC FUNCTIONS WITH NONANTITHOLOMORPHIC CHARACTERISTICS

AKIRA KOOHARA

Abstract. Let \(\kappa(z) \in C^\infty(\Omega) \) and \(\| \kappa \| < 1 \). Necessary and sufficient conditions for the system of equations \(\delta f = \kappa(z) \delta f \) to be locally plentiful are given, and under them a representation of \(\kappa \) also is given.

1. Introduction. Let \(\Omega \) be a domain in \(\mathbb{C}^n \) and let \(C^\infty(\Omega) \) denote the space of infinitely differentiable complex valued functions on \(\Omega \). Let \(a \) and \(b \) be in \(C^\infty_{(1,0)}(\Omega) \), the space of \(C^\infty \) differential forms of type \((1, 0)\) on \(\Omega \). Now, consider the \(\mathbb{R} \)-linear mapping \(\nu : C^\infty(\Omega) \rightarrow C^\infty_{(1,0)}(\Omega) \) defined by \(\nu(f) = \bar{\partial} f - \bar{\partial} \bar{a} - j_b \) for \(f \in C^\infty(\Omega) \), where \(\bar{\partial} \) denotes the operator \(\sum_{j=1}^n \partial j_j \) with \(\partial j = \partial / \partial z_j \). Then, \(\text{Ker} \, \nu \), the kernel of the map \(\nu \), is an \(\mathbb{R} \)-submodule of \(C^\infty(\Omega) \).

Quite recently there has been increasing interest in \(\text{Ker} \, \nu \), whose elements are called generalized analytic functions of several complex variables (see [5, 6, 7, 8] and references cited in [7]). We call the equation \(\nu(f) = 0 \) the generalized Cauchy-Riemann equation.

Magomedov and Paramodov [6] introduced the idea of the plentifulness of \(\text{Ker} \, \nu \) to obtain the integrability conditions of the equation \(\nu(f) = 0 \) with \(a = 0 \) on \(\Omega \). When \(\dim \mathbb{R} \text{Ker} \, \nu \) is infinite on \(\Omega \), \(\text{Ker} \, \nu \) is said to be plentiful on \(\Omega \). The plentifulness on \(\Omega \) leads to a complex foliation of codimension one of \(\Omega \) determined by the form \(b \). The null sets of generalized analytic functions are leaves of this foliation.

In [3] the author treated generalized analytic functions under the conditions on \(b \) such that a complex foliation of codimension one of \(\Omega \) follows from them.

In this paper we are concerned with the \(\mathbb{R} \)-linear mapping \(\alpha : C^\infty(\Omega) \rightarrow C^\infty_{(1,0)}(\Omega) \) defined by

\[
\alpha(f) = \sum_{j=1}^n \left\{ \kappa(z) \partial_j f - \partial_j \bar{f} \right\} \, dz_j, \quad \text{for} \, f, \kappa \in C^\infty(\Omega).
\]

\(\text{Ker} \, \alpha \) also is an \(\mathbb{R} \)-submodule of \(C^\infty(\Omega) \) as the map \(\nu \). The equation \(\alpha(f) = 0 \) was investigated by S. Hitotumatu [2] and by the author [4]. The former used function-theoretic methods and the latter differential equation-theoretical ones.

In [4], given some conditions upon the coefficient \(\kappa \), we discussed properties of elements of \(\text{Ker} \, \alpha \) (which we call pseudoholomorphic functions with characteristic
k) similar to those of holomorphic functions and obtained a local representation theorem of such functions.

Now, by using the results in [6, 7] we can obtain necessary and sufficient conditions for Ker \(\alpha \) to be plentiful, because the system of elliptic differential equations \(\alpha(f) = 0 \) can be reduced to the system of type \(\nu(g) = 0 \) by \(f = g + \bar{g} \). However, the methods and results of [6, 7] are not effectual ones to clarify completely structures of Ker \(\alpha \).

The purpose of this paper is to investigate relations between \(\dim_k \text{Ker} \alpha \) and coefficient \(k \), and to give a local representation of \(k \) in the case where Ker \(\alpha \) is plentiful.

2. Preliminaries and notations. Since Ker \(\alpha \) is an \(R \)-submodule of \(C^\infty(\Omega) \), following Magomedov and Paramodov, when \(\dim_k \text{Ker} \alpha \) is infinite, we say that Ker \(\alpha \) or the system of differential equations

\[
\partial_j \tilde{f} = \kappa(z) \partial_j f, \quad j = 1, 2, \ldots, n,
\]

is plentiful on \(\Omega \).

To attain our objective we need a few assumptions on characteristic \(\kappa \). First we assume \(||\kappa|| = \sup_{z \in \Omega} |\kappa(z)| < 1 \).

If \(\partial \kappa \) vanishes on an open subset \(U \) in \(\Omega \), then, considering the restriction of \(\alpha \) to \(U \) denoted by \(\alpha\mid_U \), we can see that Ker \((\alpha\mid_U) \) is plentiful [4]. Or, if \(\kappa \) vanishes on \(U \), then (2.1) is the Cauchy-Riemann equations on \(U \). By these reasons we may assume that, for nowhere dense subsets \(E_1 \) and \(E_2 \) of \(\Omega \),

\[
\kappa \neq 0 \quad \text{on } \Omega \backslash E_1, \quad \partial \kappa \neq 0 \quad \text{on } \Omega \backslash E_2.
\]

Let \(C^\infty_{(p,q)}(\Omega) \) denote the space of \(C^\infty \) differential forms of type \((p, q) \) on \(\Omega \).

We shall define the \(R \)-linear mapping \(\alpha^* \) of \(C^\infty(\Omega) \) into \(C^\infty_{(0,1)}(\Omega) \) by

\[
\alpha^*(f) = \sum_{j=1}^n \left\{ \kappa(z) \partial_j \tilde{f} - \bar{\partial}_j \tilde{f} \right\} d\bar{z}_j = \alpha(f).
\]

Then, we may regard \(\alpha \) and \(\alpha^* \) as \(R \)-linear differential operators of first order on \(C^\infty(\Omega) \).

Let \(\sigma \) be a vector field on \(U \) and \(f \) in \(C^\infty(U) \). When \(\sigma f = 0 \) and \(\sigma \tilde{f} = 0 \) on \(U \), we say that the vector field \(\sigma \) is tangential to \(f \). And when, for every \(f \in \text{Ker}(\alpha\mid_U) \), \(\sigma \) is tangential to \(f \), we say that \(\sigma \) is tangential to \(\text{Ker}(\alpha\mid_U) \).

To seek vector fields tangential to \(\text{Ker}(\alpha\mid_U) \), we need to construct three \(C \)-linear mappings \(\beta, \bar{\beta} \) and \(\theta: C^\infty(\Omega) \rightarrow C^\infty_{(p,q)}(\Omega) \) such that their kernels contain Ker \(\alpha \) and Ker \(\alpha^* \).

Rewriting the map \(\alpha \) by using \(\partial \), we have \(\alpha(f) = \kappa(z) \partial f - \bar{\partial} \tilde{f} \) for \(f \in C^\infty(\Omega) \).

Then we have readily the \(C \)-linear mapping \(\partial \alpha: C^\infty(\Omega) \rightarrow C^\infty_{(2,0)}(\Omega) \) defined by

\[
\partial \alpha(f) = \partial \kappa \wedge \partial f \quad \text{for } f \in C^\infty(\Omega).
\]

We put

\[
\beta = \partial \alpha \quad (= \partial \kappa \wedge \partial).
\]

Then we obtain

\[
\beta(f) = \kappa \partial \alpha(f) - \partial \kappa \wedge \alpha(f).
\]
We thus define the mapping $\bar{\beta} : C^\infty(\Omega) \to C^\infty_{0,2}(\Omega)$ as

\begin{equation}
(2.6) \quad \bar{\beta}(f) = \bar{\beta}(\bar{f}) \quad \text{for } f \in C^\infty(\Omega).
\end{equation}

From the definition of α^* and (2.3)--(2.6) we obtain

\begin{equation}
(2.7) \quad \text{Ker } \alpha^* = \text{Ker } \alpha, \quad \text{Ker } \alpha \subset \text{Ker } \beta = \text{Ker } \bar{\beta}.
\end{equation}

Lastly, we want to construct a mapping θ of $C^\infty(\Omega)$ into $C^\infty_{0,2}(\Omega)$. To do this, we need the identity: for $f \in C^\infty(\Omega)$

\begin{equation}
\kappa \{ \bar{\partial} \partial \alpha(f) + \partial \kappa \wedge \partial \alpha^*(f) - \kappa \bar{\partial} \beta(f) - \kappa \bar{\partial} \partial \kappa \wedge \alpha(f) \} - \partial \kappa \wedge \bar{\partial} \kappa \wedge \alpha^*(f)
\end{equation}

\begin{equation}
= \kappa (1 - |\kappa|^2) \bar{\partial} \partial \kappa \wedge \partial f + \partial \kappa \wedge \bar{\partial} \kappa \wedge \bar{\partial} f.
\end{equation}

Then, θ is defined as follows:

\begin{equation}
(2.8) \quad \theta(f) = \kappa (1 - |\kappa|^2) \bar{\partial} \partial \kappa \wedge \partial f + \partial \kappa \wedge \bar{\partial} \kappa \wedge \bar{\partial} f \quad \text{for } f \in C^\infty(\Omega),
\end{equation}

where $\bar{\partial} = \sum_{j=1}^n \partial_j \bar{z}_j$, $\partial_j = \partial / \partial z_j$.

The three mappings defined above may be regarded as C-linear differential operators of first order on $C^\infty(\Omega)$.

It follows from (2.7) and the above identity that

\begin{equation}
(2.9) \quad \text{Ker } \alpha \subset \text{Ker } \theta.
\end{equation}

For the purposes of later convenience, we now express (2.4) and (2.8) in terms of coordinates in C^n.

We put

\begin{equation}
\kappa_i = \partial_i \kappa, \quad \beta_{ij} = \kappa_i \partial_j - \kappa_j \partial_i,
\end{equation}

\begin{equation}
\gamma_{ijk} = (\partial_k \kappa_i) \partial_j - (\partial_k \kappa_j) \partial_i,
\end{equation}

\begin{equation}
\theta_{ijk} = \kappa (1 - |\kappa|^2) \gamma_{ijk} + \beta_{ij}(\kappa) \partial_k.
\end{equation}

From now on, the indices i, j and k (with or without subscripts) run over the set \{1, 2, \ldots, n\} unless specifically stated otherwise.

Then we have

\begin{equation}
\beta = \partial \kappa \wedge \partial = \sum_{i<j} \{ (\partial_i \kappa) \partial_j - (\partial_j \kappa) \partial_i \} \ dz_i \wedge \ dz_j,
\end{equation}

\begin{equation}
\theta = \sum_{i<j, k} \theta_{ijk} \ dz_i \wedge \ dz_j \wedge \ dz_k.
\end{equation}

In the following section we shall prove that on Ω

\begin{equation}
(2.10) \quad \bar{\partial} \partial \kappa \wedge \partial \kappa = 0, \quad \partial \kappa \wedge \partial \kappa = 0.
\end{equation}

In terms of coordinates of C^n we rewrite the left sides of (2.10).

\begin{equation}
\bar{\partial} \partial \kappa \wedge \partial \kappa = \sum_{i<j, k} \gamma_{ijk}(\kappa) \ dz_i \wedge \ dz_j \wedge \ dz_k,
\end{equation}

\begin{equation}
\partial \kappa \wedge \partial \kappa = \sum_{i<j} \beta_{ij}(\kappa) \ dz_i \wedge \ dz_j.
\end{equation}
3. Necessary conditions for plentifulness. Let \(w \) be a nonconstant pseudoholomorphic function on \(\Omega \). By the unique continuation property for pseudoholomorphic functions [4], we have a nowhere dense subset \(E_3 \) of \(\Omega \) such that \(\partial w \neq 0 \) on \(\Omega \setminus E_3 \). If we put \(E = E_1 \cup E_2 \cup E_3 \), \(\kappa \neq 0 \), \(\partial \kappa \neq 0 \) and \(\partial w \neq 0 \) on \(\Omega \setminus E \). Since \(\partial \kappa \wedge \partial w = 0 \) on \(\Omega \), for any \(z \in \Omega \setminus E \) there is a number \(i' \) such that \(\partial_{i'} \kappa \neq 0 \) and \(\partial_{i'} w \neq 0 \).

Though we must prove (2.10) about each point of \(\Omega \setminus E \), it is enough to prove it about a specific point. We may assume without loss of generality that if \(0 \in \Omega \setminus E \), then \(w(0) = 0 \), \(\partial_{i'} \kappa(0) \neq 0 \) and \(\partial_{i'} w(0) \neq 0 \).

To prove (2.10) we use the following special change of variables on a small neighborhood \(U \) of the origin

\[
(3.1) \quad \xi_j = z_j, \quad j = 1, 2, \ldots, n - 1, \quad \xi = w(z).
\]

This is nonsingular because \(w \) satisfies (2.1).

We put \(\partial_j' = \partial / \partial \xi_j, \quad \partial_j'' = \partial / \partial \xi_j \), \(\Delta = \kappa(1 - |\kappa|^2) \) and \(\kappa_k = \partial_k \kappa \). Moreover we denote by \([\quad]' \) the functions into which ones in \([\quad] \) are transformed by (3.1). If we note (2.9), i.e. \(\theta_{ijk}(f) = 0 \) for any \(f \in \text{Ker } \alpha \), \(\theta_{ijk} \) are transformed into the following on \(U \):

\[
\begin{align*}
[\theta_{ijk}]'' &= \Delta''\left\{ [\kappa_{ik}]''\partial_j' - [\kappa_{jk}]''\partial_i' \right\} + [\beta_{ij}(\kappa)]''\partial_k + [\theta_{ijk}(w)]''\partial_{i'} \\
&\quad \text{for } i \neq n, j \neq n, k \neq n, \\
[\theta_{njk}]'' &= [\Delta \kappa_{nk}]''\partial_j' + [\beta_{nj}(\kappa)]''\partial_k + [\theta_{njk}(w)]''\partial_{i'} \\
&\quad \text{for } j \neq n, k \neq n, \\
[\theta_{ink}]'' &= -[\Delta \kappa_{nk}]''\partial_j' + [\beta_{in}(\kappa)]''\partial_k + [\theta_{ink}(w)]''\partial_{i'} \\
&\quad \text{for } i \neq n, k \neq n, \\
[\theta_{ijn}]'' &= \Delta''\left\{ [\kappa_{in}]''\partial_j' - [\kappa_{jn}]''\partial_i' \right\} + [\theta_{ijn}(w)]''\partial_{i'} \\
&\quad \text{for } i \neq n, j \neq n.
\end{align*}
\]

Lemma 1. If \(\text{Ker } \alpha \) has an element \(W \) linearly independent of \(w \), then the vector fields \(\theta_{ijk} \) are tangential to \(w \).

Proof. It is sufficient to show \(\theta_{ijk}(\bar{w}) = 0 \). Assume there are a point \(z' \) and numbers \(i', j', k' \) such that \(\theta_{ijk}(\bar{w}) \neq 0 \) at \(z' \). We may regard \(z' \) as the origin and, shrinking \(U \) mentioned above if necessary, assume that \(\theta_{ijk}(\bar{w}) \neq 0 \) on \(U \). Using the coordinates introduced in (3.1), we obtain, on the image of \(U \) by (3.1),

\[
\begin{align*}
\partial_j' W'' &= 0, \quad \partial_j'' W'' = 0 \quad (j = 1, \ldots, n - 1) \quad \text{and} \quad \partial_i'' W'' = 0,
\end{align*}
\]

where we use the relation derived from (3.2), \(\theta_{ijk}(W) = [\theta_{ijk}(w)]''\partial_i'' W'' \). Therefore we see \(W'' \) depends only on \(\xi \) and is holomorphic at 0.

However, since \(\alpha(W) = 0 \), \([\kappa_i w]''(\partial_i W'' = \partial_i \bar{W}'') = 0 \), and hence \(\partial_i W'' = \partial_i \bar{W}''). \) Thus we obtain \(\bar{W} = aw + b \) on \(U \), where \(a > 0 \) is a constant and \(b \in C \), which contradicts the assumption.

Let \(S \) be any subset of \(\Omega \). The set \(N(S) \) of those vector fields on \(S \) which are tangential to \(w \) is a \(C^\infty(S) \)-submodule of the \(C^\infty(S) \)-module \(M(S) \) consisting of all vector fields on \(S \).

If \(f \in \text{Ker } \alpha \) is nonconstant, nonempty level sets \(\{ z \in \Omega | f(z) = \text{const.} \} \) are \((n - 1) \)-dimensional complex submanifolds except the set of nonordinary points of \(f \) [2].
By virtue of (2.7) every vector field β_j is tangential to $\text{Ker} \alpha$. If $0 \in \Omega \setminus E$, letting β_i denote β_{in} ($i = 1, \ldots, n - 1$), we see from the above-mentioned that $\{ \beta_i, \bar{\beta}_i \}$ span $N(U)$.

We say $\text{Ker} \alpha$ is trivial when it is C itself.

Lemma 2. Under the same assumption as in Lemma 1, (2.10) holds on Ω.

Proof. Lemma 1 shows $\theta_{ijk} \in N(\Omega)$. Assume $0 \in \Omega \setminus E$. Then θ_{ijk} can be written by linear combinations of $\beta_s, \bar{\beta}_s$ ($s = 1, \ldots, n - 1$) with coefficients in $C^\infty(U)$. If a^i_{jk}, b^i_{jk} denote the coefficients of $\beta_s, \bar{\beta}_s$, we have:

For $1 < i < j < n - 1$ and each k,

$$a^i_{jk} = 0, \quad 1 < s < n - 1, s \neq i, j,$$

$$\kappa_n a^i_{jk} = \Delta \kappa_{jk}, \quad \kappa_n a^i_{jk} = -\Delta \kappa_{ik}, \quad \sum_{s=1}^{n-1} a^i_{jk} \kappa_s = 0. \tag{3.3}$$

For $1 < i < j = n$ and each k,

$$a^i_{nk} = 0, \quad 1 < s < n - 1, s \neq i,$$

$$\kappa_n a^i_{nk} = \Delta \kappa_{nk}, \quad \kappa_n a^i_{nk} = \Delta \kappa_{ik}. \tag{3.4}$$

For $1 < k < n - 1$ and each i, j,

$$b^i_{jk} = 0, \quad 1 < s' < n - 1, s' \neq k,$$

$$\kappa_k b^k_{ijk} = 0, \quad \kappa_k b^k_{ijk} = -\beta_{ij}(\bar{k}). \tag{3.5}$$

For $k = n$ and each $i, j, \beta_{ij}(\bar{k}) = 0$ by $\beta_{jn} = 0, 1 < s' < n - 1$.

If $k \neq n$, from (3.5) we need to consider the following two cases.

Case 1. For all $k, 1 < k < n - 1, \kappa_k = 0$ on U.

Case 2. For some $k', 1 < k' < n - 1$ and some point $z' \in U, \kappa_{k'} = 0$ at z'.

We prove the first part of (2.10) only in Case 1. Let there be an open subset V of U and some i', j' ($i' < j'$) such that $\beta_{ij'}(\bar{k'}) = 0$. Then, $\beta_i = \partial_i, i = 1, \ldots, n - 1$, and so

$$\beta_i = \left[\beta_{ij'}(\bar{k'}) \right]^{-1} \left(\theta_{ij'k} + (\Delta \kappa_{ij'} \beta_{ij'}) \right) \in N(V).$$

Hence $N(V) = M(V)$, which contradicts the nontrivial Ker α.

We next prove the second part of (2.10). From (3.3) and (3.4) we have $\gamma_{ijk} = \kappa_{ik} \kappa_j - \kappa_{jk} \kappa_i = 0$ on U, which completes the proof.

Corollary. Let U be an open subset of Ω. If on U either (1) $\partial k \wedge \partial k \neq 0$, $\bar{\partial} \partial k \wedge \partial k = 0$ or (2) $\partial k \wedge \partial k = 0, \bar{\partial} \partial k \wedge \partial k \neq 0$, then Ker α is trivial.

Proof. Let $w \in \text{Ker} \alpha$ be nonconstant.

Case (1). $\bar{\partial} \partial k \wedge \partial k = 0$ leads to $\theta(w) = \partial k \wedge \partial k \wedge \bar{\partial} w$. By (2.7) and (2.9), $\bar{\partial} w = 0$ on U, w is constant.

Case (2). $\partial k \wedge \partial k = 0$ leads to $\theta(w) = \bar{\partial} \partial k \wedge \partial k$. Since $\partial k \wedge \partial w = 0, \theta(w) = c \bar{\partial} \partial k \wedge \partial k$ for some function $c \in C^\infty(U)$, and hence $\bar{\partial} \partial k \wedge \partial k = 0$ on U, which contradicts the assumption.

Theorem 1. For the system (2.1) to be plentiful on Ω, it is necessary that the characteristic κ fulfill the condition (2.10) on Ω.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
4. Sufficient conditions for plentifulness. We show the local validity of the
converse of Theorem 1. As is readily verified, the first half of (2.10) is sufficient for
the $(1, 0)$-form $\sum \kappa_j dz_j$ to determine a complex foliation of codimension one of Ω. The converse of this is not always valid (see, e.g. Example (ii) below).

Lemma 3. For a function $\kappa \in C^\infty(\Omega)$ satisfying $\partial \kappa \neq 0$ and (2.10) on Ω, there is locally a holomorphic function h such that $dh \wedge \partial \kappa = 0$, $dh \wedge \partial \kappa = 0$ and $dh \neq 0$.

Proof. If we put $\omega = \partial \kappa$, by the first half of (2.10) $\tilde{\omega} = \rho \wedge \omega$ for a form $\rho \in C^\infty(0,1)(\Omega)$. From this $\tilde{\rho} \wedge \omega = 0$, $\omega \neq 0$ leads to $\tilde{\rho} = 0$ on Ω, so that for each point of Ω there are a neighborhood U of that point and a function $g \in C^\infty(U)$ such that $\tilde{\rho} = \rho$. Putting $\tau = \omega \exp(-g)$, we see $\tilde{\tau} = 0$, which shows τ is a holomorphic form. By using $\omega = \tau \exp g$, we have $\partial g \wedge \tau + d\tau = 0$, and hence

\begin{equation}
\tau \wedge d\tau = 0, \quad \tau \neq 0 \quad \text{on } U.
\end{equation}

Let $H(U)$ denote the algebra of all holomorphic functions on U. We define $\tau = \sum \tau_j dz_j$ and $D_{ij} = \tau_i \partial_j - \tau_j \partial_i$, $\tau_j \in H(U)$. Then, by (4.1) we have a function h holomorphic on a neighborhood $V \subset U$ such that $dh \neq 0$ and $\tau \wedge dh = 0$ (i.e. D_{ij} is tangential to h). Thus the proof is complete.

Lemma 4 [4, Theorem 20]. Assume that κ satisfies (2.10) and $\partial \kappa \neq 0$ on Ω. Then (2.1) is locally reduced to the equation of one variable

\begin{equation}
\partial_z F = K(t) \partial_t F, \quad |K| < 1,
\end{equation}

where $K(t)$ is defined and of class $C^\infty(h(V))$.

Proof. We have a holomorphic function h satisfying the conditions of Lemma 3 on an open subset V of Ω. We may assume h is the coordinate function z_n. Since $\partial \kappa \wedge dz_n = 0$, $\partial \kappa \wedge dz_n = 0$, κ and $\bar{\kappa}$ are holomorphic in the other coordinates when fixing z_n, and so is a function of z_n alone. Then $\kappa = K(z_n)$ and, for any $f \in \text{Ker } \alpha$, $\partial f \wedge dz_n = \partial \bar{f} \wedge dz_n = 0$, so $f = F(z_n)$. Thus equation (4.2) is obtained.

We now take a disk $\delta \subset h(V)$. Then we have

Lemma 5. Equation (4.2) is plentiful on δ.

Proof. Let Δ_i ($i = 1, 2$) be disks concentric with δ such that $\delta \subset \Delta_1 \subset \Delta_2$. We take a function $K_1(t) \in C^\infty$ on C as follows: $K_1(t)$ equals one on δ and zero outside Δ_1. Besides, it fulfills $0 < K_1(t) < 1$. Putting $L(t) = K_1(t)K(t)$, we have the equation

\begin{equation}
\partial_z G = L(t) \overline{\partial_z G}.
\end{equation}

Consider the Dirichlet problem of (4.3) with the boundary conditions $\text{Re } G(t) = g(t)$ on $\partial \Delta_2$, and $G(t_0) = 0$, $t_0 \in \Delta_2$, where $g(t)$ is a given real valued continuous function on Δ_2. This problem is solvable [1]. The plentifulness on δ of (4.2) is derived from the fact that $\dim_R C(\partial \Delta_2)$ is infinite and from the unique continuation property for solutions of equation (4.3). Thus we have the following

Theorem 2. If the characteristic κ satisfies (2.10) on Ω, then Ker α is locally plentiful.

Using Lemma 3 and the proof of Lemma 4, we have a local representation of κ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 3. There are locally a holomorphic function h and $K(t) \in C^\infty(\text{img } h)$, $t = h(z)$, such that $\kappa = K \circ h$, $dh \neq 0$ and $K \neq 0$ if and only if κ satisfies (2.10) and $\partial \kappa \neq 0$ on Ω.

Examples. (i) Consider $\kappa = \phi(z) + \overline{\psi(z)}$, where ϕ and ψ are holomorphic and $d\phi \wedge d\psi = 0$ on Ω. Then $\partial \kappa \wedge \overline{\partial \kappa} \neq 0$, even though $\overline{\partial \partial \kappa} \wedge \partial \kappa = 0$, so $\ker \alpha$ is trivial by the corollary to Lemma 2.

(ii) We consider (2.1) on a small neighborhood U of the origin in \mathbb{C}^2 such that $w(z)$ is well defined on U by the following equation:

$$w(z) = (\bar{z}_1 + z_2)^2 - 2z_2, \quad w(0) = 0.$$

Putting $\kappa = w(z) + \bar{z}_1 + z_2$ (restricting U further if necessary) we can observe that $\ker \alpha$ is generated only by $w(z)$ (see also [4]). A simple computation shows that $\partial_1 w - \partial_2 w \neq 0$ on U, and so it is easy to obtain $\partial \kappa \wedge \overline{\partial \kappa} = (\partial_1 w - \partial_2 w)(dz_1 \wedge dz_2) \neq 0$. Moreover we can also show

$$\overline{\partial \partial \kappa} \wedge \partial \kappa \neq 0 \quad \text{on } U.$$

(iii) We regard the function w defined by (4.4) as $\kappa(z)$. Evidently we have $\partial \kappa \wedge \overline{\partial \kappa} = 0$ and (4.5) on U. By the corollary to Lemma 2 $\ker \alpha$ is trivial.

(iv) Global plentifulness is not always true, even though κ satisfies (2.10) on Ω. The following example shows global plentifulness is valid.

If we take $\kappa = (2/3)(z_1^2 + z_2)$ on $\Omega = \{z \in \mathbb{C}^2 : |z_1^2 + z_2| < 1\}$, then we have easily, for any nonnegative integers m,

$$w = (z_1^2 + z_2)^{m+1}/(m+1) + (2/3)(\bar{z}_1^2 + \bar{z}_2)^{m+2}/(m+2).$$

It is trivial for $\ker \alpha$ to be plentiful on Ω.

In conclusion we are in a position to state relations between $\dim_k \ker \alpha$ and κ.

We define the following notations: $d = \dim_k \ker \alpha$, $\theta_1 = \partial \kappa \wedge \overline{\partial \kappa}$ and $\theta_2 = \overline{\partial \partial \kappa} \wedge \partial \kappa$.

(1) If $d > 3$, $\theta_1 = \theta_2 = 0$ on Ω.

(2) If $\theta_1 = \theta_2 = 0$ on Ω, $d = +\infty$ locally.

(3) If there is an open subset U of Ω on which either $\theta_1 \neq 0$, $\theta_2 = 0$ or $\theta_1 = 0$, $\theta_2 \neq 0$, then $d = 1$ (the $\ker \alpha$ is trivial).

(4) If there is a point of Ω at which $\theta_1 \neq 0$, $\theta_2 \neq 0$, then $d < 2$.

Acknowledgment. The author expresses his sincere thanks to the referee for his helpful advice, especially for indicating a way to prove Lemma 4 without quoting Theorem 20 [4].

References

Department of Mathematics, Himeji Institute of Technology, Shosha 2167, Himeji, 671-22, Japan