SUFFICIENT CONDITIONS FOR A BUNDLE-LIKE FOLIATION
TO ADMIT A RIEMANNIAN SUBMERSION
ONTO ITS LEAF SPACE

RICHARD H. ESCOBALLES, JR.

To Bill Huebsch

Abstract. This note furnishes a necessary and sufficient condition for a bundle-
like foliation to be defined globally by a Riemannian submersion.

Introduction. The purpose of this note is to furnish sufficient conditions for a
foliated manifold with a bundle-like metric to admit a Riemannian submersion
onto its leaf space in a natural way. The main result, Theorem 2.2, says that this
will occur whenever all the leaves are closed and the holonomy of each leaf, with
respect to the foliation, is trivial. Since a foliation with a bundle-like metric can be
thought of as one being defined locally by Riemannian submersions, this note
provides, on the basis of a result of Hermann, a necessary and sufficient condition
for the foliation to be defined globally by a Riemannian submersion. Several
applications of the result to recover known theorems conclude the paper.

This work was done while the author was on sabbatical from Canisius College.
He is grateful to the college for that opportunity. He is grateful to Professors
Graver and Church of Syracuse University for their hospitality while in Syracuse,
to Professor Blumenthal for some reprints, and to Professors Boothby, Conlon and
Jensen who organized an NSF regional conference on foliations at Washington
University.

1. Let M be a C^∞ differentiable (Hausdorff) manifold which throughout this
paper is assumed to be connected and complete. Assume M has a codimension q
foliation which is denoted by \mathcal{V}. Then this foliation may be defined by a maximal
family of C^∞ submersions, $f_a: U_a \to f_a(U_a) \subset \mathbb{R}^q$, where $\{U_a\}_{a \in A}$ is an open cover
of M and where for each $p \in U_a \cap U_\beta$, there is some local C^∞ diffeomorphism,$
\phi_{\beta a}$, of \mathbb{R}^q so that $f_\beta = \phi_{\beta a} \circ f_a$ in some neighborhood U_p of p. U_p may be chosen so
it is in $U_a \cap U_\beta$. In fact, if $p' \in U_a \cap U_\beta$, $\phi_{\beta a} = \phi_{\beta a}$ on $f_a(U_p \cap U_\beta)$ and
$\phi_{\beta a} = \phi_{\beta a} \circ \phi_{\beta a}$ whenever this equation makes sense (see Lawson [8, pp. 2–3]). Observe
that a tangent vector V_p belongs to the tangent space of the leaf through p, \mathcal{V}_p, if
and only if $f_\ast V_p = 0$ or $V \in \ker f_{\ast a}p_\ast$.

Received by the editors March 19, 1981 and, in revised form, June 4, 1981.
1980 Mathematics Subject Classification. Primary 57D30; Secondary 53C25.

© 1982 American Mathematical Society
0002-9939/82/0000-0425$02.25

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now fix a Riemannian metric $\langle \cdot, \cdot \rangle$ on M. Then the metric $\langle \cdot, \cdot \rangle$ determines a distribution orthogonal to \mathcal{V} which we denote by \mathcal{K}. If E and F are arbitrary tangent vectors on M, $\mathcal{K}E$ and $\mathcal{K}F$ are the projections onto the distributions \mathcal{V} and \mathcal{K}, respectively. If $\mathcal{K}E = E$, E is called vertical; if $\mathcal{K}F = F$, F is called horizontal.

Now let us restrict ourselves to U_α and consider the submersions $f_\alpha: U_\alpha \to R^q$ which define the foliation \mathcal{V}. We say a horizontal vector field X on U is f_α basic provided $f_\alpha X_p = f_\alpha X_p$ for every p and p' in a connected component or plaque of $U_\alpha \cap L$ where L is any leaf of \mathcal{V}. In [3], we established the following result for horizontal vector fields. For convenience, we include its proof here.

Proposition 1.1. A horizontal vector field on $U_\alpha \cap U_\beta$ is f_α basic if and only if it is f_β basic.

Proof. To prove this result, assume X is f_α basic and p and p' both lie in a plaque of $U_\alpha \cap U_\beta \cap L$. Using the notation above, if p and p' both lie in $U_p \cap U_{p'}$, then

$$f_{\beta_*} X_p = \phi_{\beta_*} f_{\alpha_*} X_p = \phi_{\beta_*} f_{\alpha_*} X_{p'} = f_{\beta_*} X_{p'},$$

and so we are done. If p and p' do not lie in $U_p \cap U_{p'}$, we can choose a path in the plaque of $U_\alpha \cap U_\beta \cap L$ connecting p to p' and can select for each x on the path an open $U_x \subset U_\alpha \cap U_\beta$ so ϕ_{α_*} is defined on $f(U_x)$. Since the path is compact, the open cover $\{U_x: x \in \text{path}\}$ has a finite subcover, $\{U_{x_i}: 1 < i < n\}$. If ϵ is the Lebesgue number of the subcover, we can choose $\{p_k: 0 < k < m\}$ so that $p_0 = p$, $p_m = p'$ and $d(p_i, p_{i+1}) < \epsilon$, where d is the distance function on L induced from the metric on \mathcal{V}. Then $\phi_{\beta_*} f_{\alpha_*} X_{p_i} = \phi_{\beta_*} f_{\alpha_*} X_{p_{i+1}}$ and so from (1),

$$f_{\beta_*} X_p = f_{\beta_*} X_{p_0} = \phi_{\beta_*} f_{\alpha_*} X_{p_0} = \phi_{\beta_*} f_{\alpha_*} X_{p_1} = \phi_{\beta_*} f_{\alpha_*} X_{p_2} = \cdots = \phi_{\beta_*} f_{\alpha_*} X_{p_m} = \phi_{\beta_*} f_{\alpha_*} X_{p'} = f_{\beta_*} X_{p'}.$$

We conclude X is f_β basic on $U_\alpha \cap U_\beta$, since L was an arbitrary leaf. Switching the indices α and β we obtain the converse.

2. Let M be foliated as in §1 and suppose $\langle \cdot, \cdot \rangle$ is a Riemannian metric on M. $\langle \cdot, \cdot \rangle$ is called bundle-like with respect to the foliation \mathcal{V} if and only if for each α, $f_\alpha: U_\alpha \to R^q$ is a Riemannian submersion [10] onto its image $f_\alpha(U_\alpha)$ in R^q or, equivalently, the metric on \mathcal{K} on U_α is projectible onto its image $f_\alpha(U_\alpha) \subset R^q$. Notice, if $\langle \cdot, \cdot \rangle$ is bundle-like, the local diffeomorphisms, ϕ_{α_*}, of R^q are isometries with respect to the projected metrics. In general, the metric projected onto $f_\alpha(U_\alpha)$ does not coincide with the flat metric. In [6] the following result was established.

Theorem 2.1. (a) Let M be a manifold with foliation \mathcal{V} and complete Riemannian metric, $\langle \cdot, \cdot \rangle$, that is bundle-like with respect to the foliation. Let B denote the set of leaves of \mathcal{V} and $\pi: M \to B$ be the map: $x \to \text{(leaf through x)}$, for $x \in M$. Then, if all the leaves are closed in M, B can be made into a metric space in such a way that π is a continuous and open mapping that does not increase distances.

(b) If, further, the holonomy of each leaf with respect to the foliation is only the identity, then B can be made into a C^∞ manifold so that π is a C^∞ map of maximal rank.
Remark 2.2. Since B is a metric space, it follows B is Hausdorff. We observe that in the proof of Theorem 2.1, Hermann establishes that bundle-like foliations satisfying the hypotheses (a) and (b) above are regular in the sense of Palais [11, p. 13] or simple in the sense of Haefliger [4, p. 372]. One notes that for arbitrary regular or simple foliations, the leaves are always closed [11, p. 18] and the holonomy of each leaf with respect to the foliation is trivial [4, p. 379].

As a consequence of Theorem 2.1, we will establish the following result.

Theorem 2.2. Let M be a complete connected manifold with bundle-like foliation \mathcal{V}.

(a) If all the leaves of \mathcal{V} are closed and the holonomy group of each leaf with respect to the foliation is trivial, then there is a natural Riemannian metric on the leaf space B so that $\pi : M \to B$ taking $x \to (\text{leaf through } x)$, for $x \in M$ is a Riemannian submersion.

(b) Conversely, with the notation as in (a), if $\pi : M \to B$ is a Riemannian submersion, then all the leaves are closed and each leaf has trivial foliation holonomy.

Proof. By Theorem 2.1 (a) and (b), B is a C^∞ (Hausdorff) manifold and $\pi : M \to B$ is a C^∞ map of maximal rank. Let L be any leaf of \mathcal{V}. By the implicit function theorem we can find about each $p \in L$, a neighborhood V_p of M so that:

(1) Each leaf of \mathcal{V} intersects V_p in one and only one plaque or component.

Observe,

(2) $V_p \subset U_a$ for some a where the U_a are the open sets defined in §1. If V_p were not in some U_a containing p, take $V_p' = V_p \cap U_a$ and rename V_p, V_p'. From (1), (2) and [4, §1.5, p. 372], we have

(3) If $y, z \in V_p \cap L'$ where L' is any leaf of \mathcal{V} with $\pi_* X_y = \pi_* X_z$ for a horizontal vector field X on U_a, then we also have $f_a X_y = f_a X_z$.

By [4, p. 372], $\pi(V_p)$ is an open set in B and is diffeomorphic to $f_a(V_p) \subset R^q$. Suppose X is a horizontal vector field on V_p (i.e. X_z belongs to \mathcal{H}_z for all $z \in V_p$) and assume $\pi_* X$ is a well-defined vector field on $\pi(V_p) \subset B$. We set

$$\langle \pi_* X_p, \pi_* X_p \rangle_{\pi(p)} \overset{\text{def}}{=} \langle f_a X_p, f_a X_p \rangle_{f_a(p)}.$$

Since every tangent vector $X_p^\pi(\pi(p))$ of B at $\pi(p)$ can be lifted to a unique horizontal family defined on $V_p \cap L$, we see that (4) induces an inner product on $T_{\pi(p)} B$ using the bilinearity of $\langle \cdot, \cdot \rangle$. Evidently, the definition does not depend on the V_p which satisfies (1) and (2).

In fact, the metric on $T_{\pi(p)} B$ does not depend on a, since

$$\langle \pi_* X_p, \pi_* X_p \rangle_{\pi(p)} \overset{\text{def}}{=} \langle f_a X_p, f_a X_p \rangle_{f_a(p)}$$

$$= \langle f_{\beta_a} X_p, f_{\beta_a} X_p \rangle$$

$$= \langle \phi_{\beta_a} X_p, \phi_{\beta_a} X_p \rangle_{f_\beta(p)}$$

whenever $p \in U_\beta$.
If \(q \in L \cap V_p \), then \(\pi_\ast \dot{X}_q = \pi_\ast \dot{X}_p = X_{\pi(p)}^\ast \), since \(L \cap V_p \) has only one plaque in \(V_p \). The above \(V_p \) can be \(V_q \) and we have \(\pi(p) = \pi(q) \) and, by (3),

\[
\langle \pi_\ast \dot{X}_q, \pi_\ast \dot{X}_p \rangle_{\pi(q)} = \langle f_{\alpha_q} \dot{X}_q, f_{\alpha_q} \dot{X}_p \rangle_{f_{\alpha_q}(p)} = \langle \pi_\ast \dot{X}_p, \pi_\ast \dot{X}_p \rangle_{\pi(p)}.
\]

(6)

Suppose \(q \in L \) but \(q \notin V_p \). Then there is a path \(\gamma \) in \(L \) connecting \(p \) to \(q \). For each \(x \in \gamma \), there is an open set \(V_x \) satisfying (1) and (2) so that \(V_x \subset U_{\alpha(x)} \). Consider the cover \(\{ V_x \} \) of the segment \(\gamma \) and let \(\varepsilon \) be the Lebesgue number of the cover. Select a sequence \(\{ p_i \}_{0 \leq i \leq m} \) so that \(p_0 = p \), \(p_m = q \) and \(p_i \in \gamma \) and \(d(p_i, p_{i+1}) < \varepsilon \), where \(d \) is the distance metric on \(L \) induced from the Riemannian metric \(\langle , \rangle \). Note, \(p_i, p_{i+1} \) belong to some \(V_x \) (and hence to some \(U_{\alpha(x)} \)). To simplify notation we denote the \(V_x \) to which \(p_i, p_{i+1} \) belong by \(U_i \). We will denote \(X_{\pi(p)} \) by \(X_i \), where \(X_p = X_0 \), \(X_q = X_m \) and \(\pi_\ast X_i = X_{\pi(p)}^\ast \) for all \(i \). Then \(\pi(p) = \pi(q) \) and

\[
\langle \pi_\ast \dot{X}_p, \pi_\ast \dot{X}_p \rangle_{\pi(p)} = \langle f_{\alpha_0} \dot{X}_p, f_{\alpha_0} \dot{X}_p \rangle_{f_{\alpha_0}(p)} = \langle f_{\alpha_1} \dot{X}_1, f_{\alpha_1} \dot{X}_1 \rangle_{f_{\alpha_1}(p_1)} = \cdots = \langle \pi_\ast \dot{X}_q, \pi_\ast \dot{X}_q \rangle_{\pi(q)}.
\]

(7)

We conclude that the metric induced on \(T_{\pi(p)}B \) is independent of the point in \(L = \pi^{-1}(\pi(p)) \) and so the metric on the horizontal distribution \(\mathcal{H} \) induces a metric on \(TB \). Since everything is evidently \(C^\infty \) and since \(\phi_{p_\ast} = \phi_{p\ast} \) for \(p \) and \(p' \) close, as was mentioned in §1, the projected metric is a \(C^\infty \) metric on \(B \). This proves part (a) of Theorem 2.2.

The proof of part (b) of Theorem 2.2 runs as follows: Since \(\pi: M \to B \) is a Riemannian submersion the foliation is regular in the sense of Palais [11]. By [4, p. 379], the holonomy of each leaf is trivial.

Remark 2.3. Finer results can be obtained when \(\mathcal{V} \) is a Riemannian homogeneous foliation [1].

As an application of Theorem 2.2 we have the following result of Reinhart [12]. For simplicity we assume \(M \) is connected and complete throughout the rest of this section.

Corollary 2.4. Suppose the bundle-like foliation on \(M \) is regular. Then, \(\pi: M \to B \) is a fiber space.

Proof. Since the foliation is regular, all the leaves are closed [11, p. 18] and the holonomy of each leaf is trivial. Hence, \(\pi: M \to B \) is a Riemannian submersion by Theorem 2.2. That it is a fiber space follows from a result of Hermann [6] or Nagano [9].
Corollary 2.5. Suppose the bundle-like foliation on M is regular and the leaves are totally geodesic. Then, $\pi: M \to B$ is a fiber bundle with structure group the Lie group of isometries of the fiber.

Proof. By Theorem 2.2, $\pi: M \to B$ is a Riemannian submersion whose fibers are totally geodesic. By another result of [6, 9], $\pi: M \to B$ is a fiber bundle with the indicated structure group.

Remark 2.6. By a remark of Reinhart [12, pp. 121-122], any fiber space can be made into a Riemannian submersion. Conversely, the above cited result of Nagano and Hermann imply that any Riemannian submersion is a fiber space. Thus, in the C^∞ case, Riemannian submersions and fiber spaces are equivalent. What Theorem 2.2 adds is that the metric on the leaf space is naturally compatible with the bundle-like metric.

References

1. R. Blumenthal, Riemannian homogeneous foliations without holonomy (preprint).

Department of Mathematics, Canisius College, Buffalo, New York 14208