Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A converse to von Neumann's inequality

Author: James Rovnyak
Journal: Proc. Amer. Math. Soc. 84 (1982), 370-372
MSC: Primary 47A60; Secondary 30A10
MathSciNet review: 640233
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Pick-Nevanlinna theorem is used to show that if $ {f_0}$ is holomorphic on an open subset $ G$ of the unit disk $ D$ and $ \left\Vert {{f_0}(T)} \right\Vert \leqslant 1$ for every contraction operator $ T$ on a Hilbert space whose spectrum is contained in $ G$, then $ {f_0} = f\vert G$ where $ f$ is holomorphic and bounded by 1 on $ D$.

References [Enhancements On Off] (What's this?)

  • [1] Ciprian Foiaş, Sur certains théorèmes de J. von Neumann concernant les ensembles spectraux, Acta Sci. Math. Szeged 18 (1957), 15–20 (French). MR 0090029
  • [2] M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish; Translations of Mathematical Monographs, Vol. 50. MR 0458081
  • [3] Johann von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281 (German). MR 0043386,
  • [4] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
  • [5] Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. MR 0275190

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A60, 30A10

Retrieve articles in all journals with MSC: 47A60, 30A10

Additional Information

Keywords: Von Neumann's inequality, Pick-Nevanlinna theorem
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society