A NOTE ON IDEALS IN THE DISC ALGEBRA

FRANK FORELLI

ABSTRACT. We offer an elementary theorem on ideals in the disc algebra \(A(\overline{D}) \), which by way of a corollary, one, identifies the maximal ideals of \(A(\overline{D}) \), and two, provides a proof, which avoids the axiom of choice, that every proper ideal in \(A(\overline{D}) \) is contained in a maximal ideal.

1. Let \(A \) be a ring of functions in the closed unit disc \(\overline{D} \), each of which is continuous in \(\overline{D} \) and holomorphic in \(D \). (Thus \(A \subseteq A(\overline{D}) \).) Suppose that
(a) \(A \) is dense in the disc algebra \(A(\overline{D}) \), i.e. if \(f \in A(\overline{D}) \) and \(\varepsilon > 0 \), then there is a \(g \) in \(A \) with \(|f - g| < \varepsilon \) in \(D \).

Then we have the following.

THEOREM. Let \(Q \) be an ideal in \(A \), \(Q \neq 0 \), and let

\[X \subset \bigcup_{f \in Q} \{ f \neq 0 \} \]

where by \(\{ f \neq 0 \} \) we mean the set of those \(z \) in \(\overline{D} \) for which \(f(z) \neq 0 \). If \(X \) is closed in \(\overline{D} \), or if \(A = A(\overline{D}) \) and

\[X \cap T = \overline{X} \cap T \]

where by \(\overline{X} \) we mean the closure of \(X \) in \(\overline{D} \), then there is an \(f \) in \(Q \) with \(f \) vanishing nowhere in \(X \).

We will come to the proof in due course. The theorem raises the following question (that we are unable to answer). Which ideals \(Q \) in \(A \), \(Q \neq 0 \), have the property that if \(X \) is equal to the right side of (1), then there is an \(f \) in \(Q \) with \(f \) vanishing nowhere in \(X \)? This holds if \(Q \) is principal. What if \(Q \) is finitely generated?

Does it hold if \(Q \) is an ideal of denominators, i.e. if

\[Q = Q(\gamma) = \{ f : f \in A, f\gamma \in A \} \]

where \(\gamma \) is in the field of fractions \(A(0) \) of \(A \)? If yes, this would imply (see the proof of the corollary below) that if \(X \) is any subset of \(\overline{D}, X \neq \emptyset \), then

\[A_X = \bigcap_{\gamma \in X} A_{\gamma} \]

where by \(A_X \) we mean the ring of fractions

\[\{ g/f : g, f \in A, f \text{ vanishes nowhere in } X \} \].

1 Supported by the National Science Foundation.
and by A_ζ, $\zeta \in \overline{D}$, we mean the local ring of fractions
\[\{ g/f: g, f \in A, f(\zeta) \neq 0 \}. \]
If not, then one might ask for which $X \subset \overline{D}$ does (4) hold. In this regard we have the following.

Corollary. Let $X \subset \overline{D}$, $X \neq \emptyset$. If X is closed in \overline{D}, or if $A = A(D)$ and (2) holds, then (4) holds.

Proof. Let γ belong to the right side of (4), and put $Q =$ the right side of (3). Then (1) holds; hence there is an f in Q with f vanishing nowhere in X. This proves that $\gamma \in A_X$.

Suppose that in addition to (a) we have

(b) If $f \in A$, and f vanishes nowhere in \overline{D}, then $1/f \in A$.

Then the following holds.

Corollary. Let Q be an ideal in A, $Q \neq A$. Then there is a ζ in \overline{D} such that $Q \subset P_\zeta$ where
\[P_\zeta = \{ f: f \in A, f(\zeta) = 0 \}. \]

Proof. Otherwise, in the statement of the theorem we may take $X = \overline{D}$.

Our proof of the theorem is very elementary; its main ingredient is that if
\[\varphi = \sum_{-k}^{k} \alpha_j e^{ij\theta} \]
is a trigonometric polynomial, then
\[e^{ik\theta} \varphi = g | T \]
where $g \in A(D)$.

By the second corollary, every maximal ideal in A is a P_ζ, $\zeta \in \overline{D}$; on the other hand, if A is an algebra over \mathbb{C}, then every P_ζ is maximal. This identifies the maximal ideals of $A(D)$ in a way which is more elementary than those in [3]. To turn the second corollary around, we have an easy and elementary proof (which does not use the axiom of choice) of the fact that if f_1, \ldots, f_n in A do not have a common zero in \overline{D}, then $(f_1, \ldots, f_n) = (1)$. Other proofs of this (if $A = A(D)$) which avoid the axiom of choice are in [1] and [2].

We might point out that Theorem 1 is to some extent peculiar to the disc \mathbb{D}. For example, it fails for the ball algebra $A(B)$ in 2 variables (let $Q = P_0 = \{ f: f \in A(B), f(0) = 0 \}$, $X = \partial B = \{ (z, w): |z|^2 + |w|^2 = 1 \}$).

2. We now come to the proof of the theorem. To begin, let $A = A(D)$. Since $X \cap T$ is compact, we have
\[X \cap T \subset \bigcup_{j=1}^{n} \{ f_j \neq 0 \} \]
where \(f_1, \ldots, f_n \in \mathcal{Q} \). Let \(Y = X \cap T \). WLOG we may assume that \(Y \neq \emptyset \). Put

\[
f = \sum_{j=1}^{n} f_j f_j,
\]

let

\[
\alpha = \inf_{Y} f, \quad \beta = \inf_{T} \left(\frac{1}{\sum_{j=1}^{n} |f_j|} \right),
\]

and choose trigonometric polynomials \(\varphi_1, \ldots, \varphi_n \) such that \(|f_j - \varphi_j| < \alpha \beta \). Then (on \(T \))

\[
\left| f - \sum_{j=1}^{n} \varphi_j f_j \right| = \left| \sum_{j=1}^{n} (f_j - \varphi_j) f_j \right| < \alpha,
\]

hence \(\sum \varphi_j f_j \) vanishes nowhere in \(Y \). Replacing \(\varphi_j \) by \(e^{ik\theta} \varphi_j \) (where \(k \geq \deg \varphi_j, 1 \leq j \leq n \)), we obtain (cf. (5)) \(g_1, \ldots, g_n \) in \(A(D) \) with \(\sum g_j f_j \) vanishing nowhere in \(Y \).

Let

\[
g = \sum_{j=1}^{n} g_j f_j.
\]

Then \(g \in (f_1, \ldots, f_n) \). Since \(g \) vanishes nowhere in \(X \cap T \), \(g \) has at most a finite number of zeros in \(X \) (counting multiplicities), say \(\xi_1, \ldots, \xi_m \). We have \(\xi_j \in D \), hence

\[
g(z) = (z - \xi_1) \cdots (z - \xi_m) h(z)
\]

where \(h \in A(D), h \) vanishes nowhere in \(X \).

Let \(1 \leq j \leq m \), and choose \(h_j \in \mathcal{Q} \) with \(h_j(\xi_j) \neq 0 \). We have

\[
h_j(z) - h_j(\xi_j) = (z - \xi_j) \psi_j(z)
\]

where \(\psi_j \in A(D), \) i.e.

\[
h_j(\xi_j) = h_j - (z - \xi_j) \psi_j.
\]

Put

\[
\mu = \prod_{j=1}^{m} h_j(\xi_j);
\]

then (6) and (7) give

\[
\mu h \in (f_1, \ldots, f_n, h_1, \ldots, h_m).
\]

Thus \(h \in \mathcal{Q} \), which completes the proof of the theorem if \(A = A(D) \).

If \(A \neq A(D) \), put

\[
P = \left\{ \sum_{1}^{k} f_j g_j : f_j \in A(D), g_j \in \mathcal{Q} \right\}.
\]

Then \(P \) is an ideal in \(A(D) \), with \(Q \subset P \); by the foregoing there is an \(f \) in \(P \) with \(f \) vanishing nowhere in \(X \). We have

\[
f = \sum_{j=1}^{n} f_j g_j
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(f_j \in A(\mathbb{D}), g_j \in Q \). Let

\[
\alpha = \inf_{x} |f|, \quad \beta = \inf_{\mathbb{D}} \left(\frac{1}{\sum_{j=1}^{n} |g_j|} \right).
\]

By the hypothesis (a) we may choose \(h_j \) in \(A, 1 \leq j \leq n \), with \(|f_j - h_j| < \alpha \beta \). Put

\[
h = \sum_{j=1}^{n} h_j g_j.
\]

Then \(h \in Q \); and

\[
|f - h| = \left| \sum_{j=1}^{n} (f_j - h_j) g_j \right| < \alpha,
\]

hence \(h \) vanishes nowhere in \(X \).

3. In the foregoing we may replace \(\mathbb{D} \) by any bordered Riemann surface \(\bar{W} \) which is compact. Our proof of the theorem (and its corollaries) would then work for any ring of functions in \(A(\bar{W}) \) which is dense in \(A(W) \). One should replace the trigonometric polynomials on \(T \) by the separating selfadjoint algebra in \(C(\partial W) \) consisting of the complex linear span of quotients of inner functions in \(A(W) \) (cf. [4], where it is proved that the inner functions in \(A(W) \) separate points in \(\partial W \)).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use