Decompositions formulas for a class of partial differential equations
Authors:
Abdullah Altin and Eutiquio C. Young
Journal:
Proc. Amer. Math. Soc. 84 (1982), 543548
MSC:
Primary 35C99; Secondary 35Q05
MathSciNet review:
643746
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The paper presents decomposition formulas for solutions of a class of singular partial differential equations. The equations consist of products of iterated differential operators each of which involves a real parameter. The decomposition is given in terms of solutions corresponding to each operator.
 [1]
Dorothee
Krahn, On the iterated wave equation. IA, IB, Nederl. Akad.
Wetensch. Proc. Ser. A 60 = Indag. Math. 19 (1957),
492–505. MR 0098244
(20 #4706)
 [2]
L. E. Payne, Representation formulas for solutions of a class of partial differential equations, J. Math. Phys.38 (1959), 145149.
 [3]
L.
E. Payne and W.
H. Pell, The Stokes flow problem for a class of axially symmetric
bodies, J. Fluid Mech. 7 (1960), 529–549. MR 0115471
(22 #6272)
 [4]
W.
H. Pell and L.
E. Payne, The Stokes flow about a spindle, Quart. Appl. Math.
18 (1960/1961), 257–262. MR 0120967
(22 #11715)
 [5]
W.
H. Pell and L.
E. Payne, On Stokes flow about a torus, Mathematika
7 (1960), 78–92. MR 0143413
(26 #969)
 [6]
Alexander
Weinstein, The generalized radiation problem and the
EulerPoissonDarboux equation, Summa Brasil. Math. 3
(1955), 125–147. MR 0077770
(17,1091c)
 [7]
Alexander
Weinstein, On a class of partial differential equations of even
order, Ann. Mat. Pura Appl. (4) 39 (1955),
245–254. MR 0075411
(17,741e)
 [8]
Alexander
Weinstein, Generalized axially symmetric
potential theory, Bull. Amer. Math. Soc. 59 (1953), 20–38. MR 0053289
(14,749c), http://dx.doi.org/10.1090/S000299041953096513
 [9]
Alexander
Weinstein, On the wave equation and the equation of
EulerPoisson, Proceedings of Symposia in Applied Mathematics, Vol. V,
Wave motion and vibration theory, McGrawHill Book Company, Inc., New
YorkTorontoLondon, 1954, pp. 137–147. MR 0063544
(16,137b)
 [1]
 D. Krahn, On the iterated wave equation, Nederl. Akad. Wetensch. Proc. Ser. A 60 (1957), 492505. MR 0098244 (20:4706)
 [2]
 L. E. Payne, Representation formulas for solutions of a class of partial differential equations, J. Math. Phys.38 (1959), 145149.
 [3]
 L. E. Payne and W. H. Pell, The Stokes flow problem for a class of axially symmetric bodies, J. Fluid Mech. 7 (1960), 529549. MR 0115471 (22:6272)
 [4]
 , The Stokes flow about a spindle, Quart. Appl. Math. 18 (1960), 257262. MR 0120967 (22:11715)
 [5]
 , On Stokes flow about a torus, Mathematica 7 (1960), 7892. MR 0143413 (26:969)
 [6]
 A. Weinstein, The generalized radiation problem and the EulerPoissonDarboux equation, Summa Brasil. Math. 3 (1955), 125147. MR 0077770 (17:1091c)
 [7]
 , On a class of partial differential equations of even order, Ann. Mat. Pura Appl. 39 (1955), 245254. MR 0075411 (17:741e)
 [8]
 , Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 2038. MR 0053289 (14:749c)
 [9]
 , On the wave equation and the equation of EulerPoisson, Proc. Sympos. Appl. Math., Vol. 5, Amer. Math. Soc., Providence, R.I., 1954, pp. 137147. MR 0063544 (16:137b)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
35C99,
35Q05
Retrieve articles in all journals
with MSC:
35C99,
35Q05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198206437461
PII:
S 00029939(1982)06437461
Keywords:
Decomposition formula,
recursive relation,
iterated Laplacian,
general solution
Article copyright:
© Copyright 1982
American Mathematical Society
