Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Decompositions formulas for a class of partial differential equations


Authors: Abdullah Altin and Eutiquio C. Young
Journal: Proc. Amer. Math. Soc. 84 (1982), 543-548
MSC: Primary 35C99; Secondary 35Q05
DOI: https://doi.org/10.1090/S0002-9939-1982-0643746-1
MathSciNet review: 643746
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper presents decomposition formulas for solutions of a class of singular partial differential equations. The equations consist of products of iterated differential operators each of which involves a real parameter. The decomposition is given in terms of solutions corresponding to each operator.


References [Enhancements On Off] (What's this?)

  • [1] D. Krahn, On the iterated wave equation, Nederl. Akad. Wetensch. Proc. Ser. A 60 (1957), 492-505. MR 0098244 (20:4706)
  • [2] L. E. Payne, Representation formulas for solutions of a class of partial differential equations, J. Math. Phys.38 (1959), 145-149.
  • [3] L. E. Payne and W. H. Pell, The Stokes flow problem for a class of axially symmetric bodies, J. Fluid Mech. 7 (1960), 529-549. MR 0115471 (22:6272)
  • [4] -, The Stokes flow about a spindle, Quart. Appl. Math. 18 (1960), 257-262. MR 0120967 (22:11715)
  • [5] -, On Stokes flow about a torus, Mathematica 7 (1960), 78-92. MR 0143413 (26:969)
  • [6] A. Weinstein, The generalized radiation problem and the Euler-Poisson-Darboux equation, Summa Brasil. Math. 3 (1955), 125-147. MR 0077770 (17:1091c)
  • [7] -, On a class of partial differential equations of even order, Ann. Mat. Pura Appl. 39 (1955), 245-254. MR 0075411 (17:741e)
  • [8] -, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20-38. MR 0053289 (14:749c)
  • [9] -, On the wave equation and the equation of Euler-Poisson, Proc. Sympos. Appl. Math., Vol. 5, Amer. Math. Soc., Providence, R.I., 1954, pp. 137-147. MR 0063544 (16:137b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35C99, 35Q05

Retrieve articles in all journals with MSC: 35C99, 35Q05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1982-0643746-1
Keywords: Decomposition formula, recursive relation, iterated Laplacian, general solution
Article copyright: © Copyright 1982 American Mathematical Society

American Mathematical Society